K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

11 tháng 2 2020

Dựa vào tính chất đường trung bình của tam giác:

DM=EN/2

theo tính chất đương trung bình của hình thang:

EN=(DM+m)/2

Ta có \(DE\parallel BC\Rightarrow\triangle ADE\approx\triangle ABC\Rightarrow\frac{A D}{A B}=\frac{A E}{A C}\). Lại có \(EF\parallel CD\Rightarrow\triangle AFE\approx\triangle ADC\Rightarrow\frac{A F}{A D}=\frac{A E}{A C}\). Suy ra \(\frac{A F}{A D} = \frac{A D}{A B}\). Thay số: \(\frac{9}{A D} = \frac{A D}{16} \Rightarrow A D^{2} = 144 \Rightarrow A D = 12 \textrm{ } \text{cm}\).

Xét ΔADC có FE//DC

nên \(\frac{AF}{AD}=\frac{AE}{AC}\) (1)

Xét ΔABC có DE//BC

nên \(\frac{AD}{AB}=\frac{AE}{AC}\) (2)

Từ (1),(2) suy ra \(\frac{AF}{AD}=\frac{AD}{AB}\)

=>\(AF\cdot AB=AD^2\)

=>\(AD^2=9\cdot16=144=12^2\)

=>AD=12(cm)

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0

a: Xét ΔABC có DM//BC

nên \(\dfrac{AD}{AB}=\dfrac{AM}{AC}\)

=>\(\dfrac{AM}{AC}=\dfrac{1}{3}\)

=>\(\dfrac{2}{AC}=\dfrac{1}{3}\)

=>AC=6(cm)

Xét ΔABC có DM//BC

nên \(\dfrac{DM}{BC}=\dfrac{AD}{AB}\)

=>\(\dfrac{4}{BC}=\dfrac{1}{3}\)

=>\(BC=3\cdot4=12\left(cm\right)\)

b: bạn ghi lại đề nha bạn