Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B2 : Hình dễ bạn tử kẻ hình nhá !
a)Ta có AH là đường cao
=> Góc AHB = AHC = 90o
Xết tam giác AHB có :
BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )
=> BAH + 90o + 70o =180o
=> BAH = 180o-70o-90o
=> BAH = 20o
Xét tam giác AHC cps :
AHC + HAC + HCA = 180o
=> 90 + HAC + 30 = 180
=> HAC = 180-30-90=60o
b) Ta có AD là đường phân giác
=> ABD= CAD = 80/2 = 40o
Xét tam giác ADB có :
ABD + BDA +DAB = 180
=> 70 + BDA + 40 = 180
=> BDA = 180-40-70 = 70
Xét tam giác ADC có :
ACD + CDA + DAC = 180
=> 30 + CDA + 40 = 180
=> CDA = 180-40-30
=> CDA=110
( **** )

Bài 2:
\(\widehat{ADB}=180^0-80^0=100^0\)
Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)
\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)
\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)
\(\Leftrightarrow\widehat{C}=40^0\)
hay \(\widehat{B}=60^0\)
=>\(\widehat{BAC}=80^0\)

Xin chào đồng loại. À k, fải là xin chào "c - hó" ms đúng tên của pạn chứ nhỉ, bạn "depgiaicogisaidau" thân yêu!
P/s: mai đổi thành "lachocogisaidau" nha!

Bài 2:
Đặt số đo góc B là x, số đo góc C là y
Theo đề, ta có:
\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)

a: Xét ΔABC có \(\hat{ABC}+\hat{ACB}+\hat{BAC}=180^0\)
=>\(\hat{ABC}+\hat{ACB}=180^0-\hat{BAC}\)
=>\(2\left(\hat{IBC}+\hat{ICB}\right)=180^0-\hat{BAC}\)
=>\(\hat{IBC}+\hat{ICB}=90^0-\frac12\cdot\hat{BAC}\)
Xét ΔBIC có \(\hat{BIC}+\hat{IBC}+\hat{ICB}=180^0\)
=>\(\hat{BIC}=180^0-\left(90^0-\frac12\cdot\hat{BAC}\right)=90^0+\frac12\cdot\hat{BAC}\)
Vì BI và BK lần lượt là phân giác trong và ngoài tại đỉnh B của ΔABC nên BI⊥BK
Vì CI và CK lần lượt là phân giác trong và ngoài tại đỉnh C của ΔABC
nên CI⊥CK
Xét tứ giác BICK có \(\hat{BIC}+\hat{BKC}+\hat{IBK}+\hat{ICK}=360^0\)
=>\(\hat{BIC}+\hat{BKC}=360^0-90^0-90^0=180^0\)
=>\(\hat{BKC}=180^0-90^0-\frac12\cdot\hat{BAC}=90^0-\frac12\cdot\hat{BAC}\)
b: ΔDBK vuông tại B
=>\(\hat{BKD}+\hat{BDK}=90^0\)
=>\(90^0-\frac12\cdot\hat{BAC}+\hat{BDK}=90^0\)
=>\(\hat{BDC}=\frac12\cdot\hat{BAC}\)

Đặ \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Theo đề, ta có: 5a=3b=15c
=>\(\frac{5a}{15}=\frac{3b}{15}=\frac{15c}{15}\)
=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}=\frac{a+b+c}{3+5+1}=\frac{180}{9}=20\)
=>\(\begin{cases}a=20\cdot3=60\\ b=20\cdot5=100\\ c=20\cdot1=20\end{cases}\)
=>\(\hat{A}=60^0;\hat{B}=100^0;\hat{C}=20^0\)
AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=30^0\)
Xét ΔADC có \(\hat{ADB}\) là góc ngoài tại đỉnh D
nên \(\hat{ADB}=\hat{DAC}+\hat{DCA}=30^0+20^0=50^0\)
Tam giác \(A B C\) có các góc \(\hat{A} , \hat{B} , \hat{C}\) thỏa mãn:
\(5 \hat{A} = 3 \hat{B} = 15 \hat{C} .\)
1 . Tính số đo các góc của tam giác \(A B C\).
Gọi giá trị chung bằng \(k\). Ta có:
\(5 \hat{A} = 3 \hat{B} = 15 \hat{C} = k .\)
Suy ra:
\(\hat{A} = \frac{k}{5} , \hat{B} = \frac{k}{3} , \hat{C} = \frac{k}{15} .\)
Vì tổng ba góc của tam giác bằng \(180^{\circ}\):
\(\frac{k}{5} + \frac{k}{3} + \frac{k}{15} = 180.\)
Quy đồng mẫu số 15:
\(\frac{3 k}{15} + \frac{5 k}{15} + \frac{k}{15} = 180.\) \(\frac{9 k}{15} = 180.\) \(\frac{3 k}{5} = 180 \Rightarrow k = 180 \times \frac{5}{3} = 300.\)
Từ đó:
\(\hat{A} = \frac{300}{5} = 60^{\circ} ,\) \(\hat{B} = \frac{300}{3} = 100^{\circ} ,\) \(\hat{C} = \frac{300}{15} = 20^{\circ} .\)
Vậy \(\hat{A}=60^{\circ};\hat{B}=100^{\circ};\hat{C}=20^{\circ}.\)
2.Tính \(\hat{A D B}\).
- Tia phân giác \(A D\) chia góc \(\hat{A} = 60^{\circ}\) thành hai phần bằng nhau:
\(\hat{B A D} = \hat{D A C} = 30^{\circ} .\)
- Xét tam giác \(A D B\):
\(\hat{B A D} = 30^{\circ} , \hat{B} = 100^{\circ} .\)
Suy ra góc còn lại:
\(\hat{A D B} = 180^{\circ} - \left(\right. 30^{\circ} + 100^{\circ} \left.\right) = 50^{\circ} .\)
Vậy \(\hat{A}=60^{\circ};\hat{B}=100^{\circ};\hat{C}=20^{\circ}.\)
CHO MÌNH XIN 1 TICK NHA\(\hat{A D B}=50^{\circ}\)
b. Khi ∠B = 30o thì ∠C = 180o - 30o - 80o = 70o ( 1 điểm )
Vì ∠B < ∠C < ∠A ⇒ AC < AB < BC ( 1 điểm )