
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Hình tự vẽ nha
a) Vì tam giác ABC cân tại A
=> ABC = ACB (1)
Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)
Từ (1) và (2) => ABD = ACE
Xét tam giác ABD và tam giác ACE có :
AB = AC ( gt )
ABD = ACE ( cmt )
BD = CE ( gt )
=> tam giác ABD = tam giác ACE ( c-g-c )
=> D = E
Xét tam giác BHD và tam giác CKE có :
DHB = EKC ( = 900 )
BD = CE ( gt )
D = E ( cmt )
=> tam giác BHD = tam giác CKE ( ch - gn )
=> đpcm
b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )
=> HAB = KAC ( 2 góc tương ứng )
Xét tam giác AHB và tam giác AKC có :
HAB = KAC ( cmt )
AHB = AKC ( = 900 )
AB = AC ( gt )
=> tam giác AHB = tam giác AKC ( ch - gn )
=> đpcm
c) Nối H với K
Xét tam giác ADE cân tại A ( vì AD = AE )
=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Xét tam giác AHK cân tại A ( vì AH = AK )
\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) => D = AHK
mà 1 góc này ở vị trí đồng vị
=> HK // DE hay HK // BC ( đpcm )
Có j lên đây hỏi nha : Group Toán Học

Ta có: \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
\(\hat{ACB}=\hat{KCE}\) (hai góc đối đỉnh)
Do đó: \(\hat{ABC}=\hat{KCE}\)
Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
DB=CE
\(\hat{DBH}=\hat{ECK}\)
Do đó: ΔDHB=ΔEKC
=>DH=EK
Xét ΔDHM vuông tại H và ΔEKM vuông tại K có
DH=EK
HM=KM
Do đó: ΔDHM=ΔEKM
=>\(\hat{DMH}=\hat{EMK}\)
mà \(\hat{DMH}+\hat{DMK}=180^0\) (hai góc kề bù)
nên \(\hat{EMK}+\hat{DMK}=180^0\)
=>D,M,E thẳng hàng