Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D E K I M N
a) Xét 2 tam giác ABD và EBD vuông tại A và C có:
BD:cạnh chung
ABD=EBD( vì BD là tia phân giác)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)(2 cạnh tương ứng)
b)\(\Rightarrow AD=DE\)
Mà DE <DC( vì cạnh góc vuông<cạnh huyền)
\(\Rightarrow AD< DC\left(dpcm\right)\)
c) Vì AD=DE và AK=KC(cmt)
\(\Rightarrow\Delta AKD=\Delta ECD\)(2 cạnh góc vuông)
\(\Rightarrow\widehat{ADK}=\widehat{EDC}\)( 2 góc tương ứng)
Mà ADE+EDC=180 độ
\(\Rightarrow KDA+ADE=180^0\)
\(\Rightarrow KDE=180^0\)
\(\Rightarrow K,D,E\)thẳng hàng
d) Gọi \(IM\perp AB;IN\perp AC\)
Xét tam giác ABC có M là trung điểm của AB và IM//AC
\(\Rightarrow I\)là trung điểm của BC ( theo tính chất đường trung bình trong tam giác)
Phần b là mà DE<DC vì cạnh góc vuông nhỏ hơn cạnh huyền nha bạn
a: Xét ΔAKB và ΔAKC có
AK chung
\(\hat{KAB}=\hat{KAC}\)
AB=AC
Do đó: ΔAKB=ΔAKC
=>KB=KC
=>K nằm trên đường trung trực của BC(1)
Ta có: O nằm trên đường trung trực của AB
=>OA=OB(2)
ta có: O nằm trên đường trung trực của AC
=>OA=OC(3)
Từ (2),(3) suy ra OB=OC
=>O nằm trên đường trung trực của BC(4)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(5)
Từ (1),(4),(5) suy ra A,O,K thẳng hàng
b: Xét ΔDBC và ΔECB có
\(\hat{DBC}=\hat{ECB}\) (ΔABC cân tại A)
BC chung
\(\hat{DCB}=\hat{EBC}\) (ΔOBC cân tại O)
Do đó: ΔDBC=ΔECB
=>DC=EB và DB=EC
Ta có: DB+AD=AB
EC+AE=AC
mà DB=EC và AB=AC
nên AD=AE
Gọi I là giao điểm của hai đường trung trực của các đoạn thẳng AD,AE
I nằm trên đường trung trực của AD
=>IA=ID(6)
I nằm trên đường trung trực của AE
=>IA=IE(7)
Từ (6),(7) suy ra IE=ID
OD=OE nên O nằm trên đường trung trực của ED(8)
IE=ID nên I nằm trên đường trung trực của ED(9)
AE=AD nên A nằm trên đường trung trực của ED(10)
Từ (8),(9),(10) suy ra A,I,O thẳng hàng
mà A,O,K thẳng hàng
nên A,I,O,K thẳng hàng
=>ĐPCM