
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\Rightarrow2\overrightarrow{IA}-\overrightarrow{IA}-\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}=\overrightarrow{0}\)
\(\Rightarrow2\overrightarrow{AI}=\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow\overrightarrow{AB}+2\overrightarrow{AI}=\overrightarrow{AC}\). Từ đó suy ra cách dựng điểm I:
A B C I
b) Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:
\(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}+2\overrightarrow{IA}-\overrightarrow{MI}-\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}\)
\(=2\overrightarrow{MI}+\left(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}\right)=2\overrightarrow{MI}\)
Suy ra I là trung điểm MN hay MN đi qua điểm I cố định (đpcm).
c) \(\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MB}+\frac{1}{2}\overrightarrow{MN}=\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MC}\)
Đặt K là điểm sao cho \(\overrightarrow{KA}+\frac{1}{2}\overrightarrow{KC}=\overrightarrow{0}\Rightarrow\hept{\begin{cases}K\in\left[AC\right]\\KA=\frac{1}{2}KC\end{cases}}\)tức K xác định
Khi đó \(\overrightarrow{MP}=\overrightarrow{MK}+\overrightarrow{KA}+\frac{1}{2}\overrightarrow{MK}+\frac{1}{2}\overrightarrow{KC}=\frac{3}{2}\overrightarrow{MK}\), suy ra MP đi qua K cố định (đpcm).
Cho tam giác ABC. Xác định điểm I, J, K thỏa các điều kiện sau: 3IA+2IC=0 ; 2JA+3JB=3BC ; KA+KB+KC=0


(MA+MB)(MC-MB)=0 => MC-MB=0 => MB=MC
=> tg MBC cân tại M
Từ M dựng đường thẳng d vuông góc với BC => d là đường cao của tg cân MBC => d đồng thời là đường trung trực
=> Tập hợp các điểm M thoả mãn đk đề bài là đường thẳng d là đường trung trực của BC

\(a,\) \(\overrightarrow{IA}=2\overrightarrow{IB}-4\overrightarrow{IC}\)
\(\overrightarrow{IA}=2\overrightarrow{IB}-2\overrightarrow{IC}-2\overrightarrow{IC}=2\overrightarrow{CB}-2\overrightarrow{IC}\)
\(=2\left(\overrightarrow{AB}-\overrightarrow{AC}\right)-2\left(\overrightarrow{AC}-\overrightarrow{AI}\right)\)
\(\overrightarrow{IA}=2\overrightarrow{AB}-2\overrightarrow{AC}-2\overrightarrow{AC}+2\overrightarrow{AI}\)
\(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}\)
\(b,\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AC}=\dfrac{4}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(1\right)\)
\(\overrightarrow{JG}=\overrightarrow{AG}-\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AM}-\dfrac{2}{3}\overrightarrow{AB}\)\((\) \(\) \(M\) \(trung\) \(điểm\) \(BC)\)
\(\overrightarrow{JG}=\dfrac{\overrightarrow{AB}+\overrightarrow{AC}}{3}-\dfrac{2}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=-\dfrac{1}{3}\left(\overrightarrow{AB}-\overrightarrow{AC}\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\overrightarrow{IJ}=-4\overrightarrow{JG}\Rightarrow I,J,G\) \(thẳng\) \(hàng\)

Ta có: \(\overrightarrow{IA}-2\cdot\overrightarrow{IB}+4\cdot\overrightarrow{IC}=\overrightarrow{0}\)
=>\(\overrightarrow{IA}-2\left(\overrightarrow{IA}+\overrightarrow{AB}\right)+4\left(\overrightarrow{IA}+\overrightarrow{AC}\right)=\overrightarrow{0}\)
=>\(3\cdot\overrightarrow{IA}-2\cdot\overrightarrow{AB}+4\cdot\overrightarrow{AC}=\overrightarrow{0}\)
=>\(3\cdot\overrightarrow{IA}=2\cdot\overrightarrow{AB}-4\cdot\overrightarrow{AC}\)
=>\(\overrightarrow{IA}=\frac23\cdot\overrightarrow{AB}-\frac43\cdot\overrightarrow{AC}\)
\(P=\overrightarrow{IA}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=\left(\frac23\cdot\overrightarrow{AB}-\frac43\cdot\overrightarrow{AC}\right)\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\frac23\cdot\left(\overrightarrow{AB}\right)^2-\frac23\cdot\overrightarrow{AB}\cdot\overrightarrow{AC}-\frac43\cdot\left(\overrightarrow{AC}\right)^2\)
\(=\frac23\cdot AB^2-\frac23\cdot AB\cdot AC\cdot cosBAC-\frac43\cdot AC^2\)
\(=\frac23\cdot AB^2-\frac23\cdot AB^2\cdot cos60-\frac43\cdot AB^2=-\frac23\cdot AB^2-\frac23\cdot AB^2\cdot\frac12\)
\(=-AB^2=-a^2\)