Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Dùng định lý của tia phân giác mới học sau bài dịnh lý Ta-lét đó lặp tỉ số ra thôi haha

A B C D H
Áp dụng định lí Pytago, được : \(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)
Đặt BD = x (cm) (0x<5) => CD = 5-x (cm)
Theo tính chất tia phân giác, ta có : \(\frac{AB}{AC}=\frac{BD}{CD}\)hay \(\frac{x}{5-x}=\frac{3}{4}\Rightarrow4x=-3x+15\Rightarrow x=\frac{15}{7}\)
Lại có DH // AC => \(\frac{BD}{BC}=\frac{DH}{AC}\Rightarrow DH=\frac{BD.AC}{BC}=\frac{\frac{15}{7}.4}{5}=\frac{12}{7}\)(cm)
Vậy DH = 12/7 cm.

+) Ta có: AB vừa là đường cao vừa là đường trung tuyến
=> tam giác ADH cân tại A
=> AH = AD (1)
AC vừa là đường cao vừa là đường trung tuyến
=> tam giác AEH cân tại A
=> AH = AE (2)
Từ (1) và (2) => AH = AD = AE
+) Có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
AH.BC = AB.AC
=> \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}=2,4cm\)
+) Có: DE = AD + AE = AH + AH = 2AH = 2.2,4 = 4,8cm
Vậy DE = 4,8cm

câu a) c/m 2 tam giác đó đồng dạng ak? mk mới hok lớp 7 nên ko bít!!!!
756867879

a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=4
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
=>\(AD=\dfrac{3}{2}=1,5\left(cm\right)\)
b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCD}\) chung
Do đó: ΔCHD đồng dạng với ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)
=>\(CH\cdot CB=CA\cdot CD\)
c: Ta có: AE\(\perp\)BC
DH\(\perp\)BC
Do đó: HD//AE
Xét ΔAEC có HD//AE
nên \(\dfrac{HC}{HE}=\dfrac{CD}{DA}\)
mà \(\dfrac{CD}{DA}=\dfrac{BC}{BA}\)
nên \(\dfrac{HC}{HE}=\dfrac{BC}{BA}\)
d: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
=>D nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BD là đường trung trực của AH
=>BD\(\perp\)AH tại O và O là trung điểm của AH
=>OA=OH(3)
Xét ΔCMN có AO//MN
nên \(\dfrac{AO}{MN}=\dfrac{CO}{CM}\left(4\right)\)
Xét ΔCBM có OH//BM
nên \(\dfrac{OH}{BM}=\dfrac{CO}{CM}\left(5\right)\)
Từ (3),(4),(5) suy ra MN=BM
=>M là trung điểm của BN

Sửa đề: M là hình chiếu của D trên BC
a: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có
góc C chung
=>ΔCMD đồng dạng với ΔCAB
=>CM/CA=CD/CB
=>CM*CB=CA*CD
c: góc DMB+góc DAB=180 độ
=>DMBA nội tiếp
=>góc CBD=góc CAM

a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
BH=6*8/10=4,8cm
b: ΔAHC vuôg tại H có HN vuông góc AC
nên HN^2=AN*CN
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
CB=√6^2+8^2=10(cm)
BH=6*8/10=4,8cm
b: ΔAHC vuôg tại H có HN vuông góc AC
nên HN^2=AN*CN