K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là:  C 2 n 3

Số đường chéo đi qua tâm là n => số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2 .

Số tam giác vuông được tạo thành là:  4 . C n 2 .

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 1 8 .

24 tháng 4 2016

Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).

Theo bài ta có phương trình :

\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)

\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)

\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)

\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)

\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))

\(\Leftrightarrow n=18\)

Vậy đa giác đều có 16 cạnh, (thập lục giác đều)

8 tháng 4 2016

Không gian mẫu \(\Omega\) là tập hợp tất cả các cách chọn ngẫu nhiên 4 đỉnh trong 12 đỉnh 

Ta có \(n\left(\Omega\right)=C_{12}^4=495\)

Gọi A là biến cố : 4 đỉnh được chọn tạo thành một hình chữ nhật"

Gọi đường chéo của đa giác đều \(A_1A_2A_3...A_{12}\) đi qua tâm đường tròn (O) là đường chéo lớn thì đa giác đã cho có 6 đường chéo lớn.

Mỗi hình chữ nhật có các đỉnh là 4 đỉnh trong 12 điểm \(A_1,A_2,A_3,...A_{12}\) có các đường chéo là 2 đường chéo lớn. Ngược lại, mỗi cặp đường chéo lớn có các đầu mút là 4 đỉnh của một hình chữ nhâtk.

Do đó, số hình chữ nhật được tạo thành là : \(n\left(A\right)=C_6^2=15\)

Vậy xác suất cần tính là \(P\left(A\right)=\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{15}{495}=\frac{1}{33}\)

NV
14 tháng 4 2020

Số tam giác: \(C_{2n}^3=\frac{\left(2n\right)!}{\left(2n-3\right)!.6}=\frac{n\left(2n-1\right)\left(2n-2\right)}{3}\)

Cứ hai đường chéo qua tâm của đa giác đều sẽ đóng vai trò hai đường chéo của hình chữ nhật

Đa giác có \(n\) đường chéo qua tâm \(\Rightarrow C_n^2=\frac{n\left(n-1\right)}{2}\) hình chữ nhật

Ta có pt:

\(\frac{n\left(2n-1\right)\left(2n-2\right)}{3}=10n\left(n-1\right)\)

\(\Leftrightarrow n\left(n-1\right)\left(n-8\right)=0\Rightarrow n=8\)

NV
15 tháng 2 2020

Tất cả các cạnh của tứ giác là đường chéo khi 4 đỉnh đó ko có 2 đỉnh nào liền kề nhau.

Cố định một đỉnh, có n cách chọn

Chọn đỉnh thứ 2 cách đỉnh thứ nhất \(x_1\) đỉnh, đỉnh thứ 3 cách đỉnh 2 \(x_2\) ; đỉnh thứ 4 cách đỉnh thứ 3 \(x_3\) và cách đỉnh thứ nhất \(x_4\) đỉnh (với \(x_i\ge1\))

\(\Rightarrow x_1+x_2+x_3+x_4=n-4\)

Theo nguyên lý chia kẹo Euler, số nghiệm của pt trên là: \(C_{n-5}^3\)

Vậy số đa giác thỏa mãn là: \(\frac{nC_{n-5}^3}{4}\)

Xác suất: \(P=\frac{nC_{n-5}^3}{4C_n^4}=\frac{30}{91}\) \(\Rightarrow n=15\)

Bài toán thực tế để cho học sinh biết: Trong một cuộc thi Toán của một khối học sinh, người ta xếp n học sinh (n > 20) thành một hàng dọc theo đúng thứ tự từ trái sang phải theo số báo danh tăng dần.Biết rằng:Số báo danh của mỗi học sinh tạo thành một cấp số cộng (CSC) với số hạng đầu a₁ và công sai d > 0.Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh...
Đọc tiếp

Bài toán thực tế để cho học sinh biết: Trong một cuộc thi Toán của một khối học sinh, người ta xếp n học sinh (n > 20) thành một hàng dọc theo đúng thứ tự từ trái sang phải theo số báo danh tăng dần.
Biết rằng:

  1. Số báo danh của mỗi học sinh tạo thành một cấp số cộng (CSC) với số hạng đầu a₁công sai d > 0.
  2. Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh của học sinh đứng thứ 8 từ trái sang.
  3. Tổng số báo danh của tất cả học sinh có vị trí chẵn (tính từ trái sang) đúng bằng 3 lần tổng số báo danh của các học sinh có vị trí lẻ.
  4. Nếu cộng tất cả số báo danh ở vị trí là bội của 3 rồi trừ đi tổng các số báo danh ở vị trí là bội của 4 thì được 2025.
  5. Biết rằng hiệu giữa số báo danh của học sinh cuối cùngsố báo danh của học sinh thứ 11 chính là 11 lần công sai.

Hãy xác định số lượng học sinh n, cũng như các giá trị a₁d thỏa mãn toàn bộ các điều kiện trên.

1
19 tháng 9

*Giải bài toán*

Gọi số hạng đầu là \(a_1\) và công sai là \(d\). Số hạng tổng quát là \(a_n = a_1 + (n-1)d\).


*Điều kiện 1*

Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh của học sinh đứng thứ 8:

\[a_6 + a_7 + a_8 + a_9 + a_{10} = 5a_8\]

\[5a_1 + 35d = 5(a_1 + 7d)\]

Điều này luôn đúng.


*Điều kiện 2*

Tổng số báo danh của học sinh ở vị trí chẵn bằng 3 lần tổng số báo danh của học sinh ở vị trí lẻ:

\[S_{chẵn} = 3S_{lẻ}\]

Với \(n = 22\), ta có:

\[S_{chẵn} = a_2 + a_4 + ... + a_{22}\]

\[S_{lẻ} = a_1 + a_3 + ... + a_{21}\]

\[11a_1 + 110d = 3(11a_1 + 55d)\]

\[11a_1 + 110d = 33a_1 + 165d\]

\[22a_1 = -55d\]

\[2a_1 = -5d\]

*Điều kiện 3*

\[S_3 - S_4 = 2025\]

Với \(n = 22\), \(k = 7\), \(l = 5\):

\[S_3 = 7a_1 + 77d\]

\[S_4 = 5a_1 + 55d\]

\[2a_1 + 22d = 2025\]

*Điều kiện 4*

\[a_{22} - a_{11} = 11d\]

\[11d = 11d\]

\[n = 22\]

*Tìm \(a_1\) và \(d\)*

Từ \(2a_1 = -5d\) và \(2a_1 + 22d = 2025\):

\[2a_1 = -5d\]

\[-5d + 22d = 2025\]

\[17d = 2025\]

\[d = \frac{2025}{17} = 119\]

\[2a_1 = -5 \cdot 119\]

\[a_1 = -\frac{595}{2}\]

*Kết quả*

\[n = 22\]

\[a_1 = -\frac{595}{2}\]

\[d = 119\]

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây : - Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1)  - Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo...
Đọc tiếp

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây :

- Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1) 

- Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo cách trên, kí hiệu là (2) (H2)

- Bước 3 : Với 4 tam giác vuông cân mầu trắng như trong hình 2, ta lại tạo được 4 hình vuông với mầu xám theo cách trên (H3)

- ..........

- Bước n : Ở bước này ta có \(2^{n-1}\) hình vuông với mầu sám được tạo thành theo cách trên, kí hiệu là (n)

a) Gọi \(u_n\) là tổng diện tích của tất cả các hình vuông mới được tạo thành ở bước thứ n.

Chứng minh rằng :

               \(u_n=\dfrac{1}{2^{n+1}}\)

b) Gọi \(S_n\) là tổng diện tích của tất cả các hình vuông mầu xám có được sau n bước. Quan sát hình vẽ để dự đoán giới hạn của \(S_n\) khi \(n\rightarrow+\infty\). Chứng minh dự đoán đó ?

1
25 tháng 5 2016

Gọi (O) là đường tròn ngoại tiếp đa giác, do đa giác có số đỉnh là số chẳn nên đường nối một đỉnh tùy ý với tâm O sẽ đi qua một đỉnh khác (ta gọi là 2 điểm xuyên tâm đối) 
do đa giác có n đỉnh nên có \(\frac{n}{2}\) cặp điểm xuyên tâm đối (hay có \(\frac{n}{2}\) đường chéo đi qua tâm O) 
với mỗi hai đường chéo qua tâm O ta được 1 hình chữ nhật   
vì có 12 hình chữ nhật và có \(\frac{n}{2}\) đường chéo nên : \(C_{\frac{n}{2}}^2=15\left(dk:n\ge4\right)\)\(\Leftrightarrow\frac{\left(\frac{n}{2}\right)!}{2!.\left(\frac{n}{2}-2\right)!}=15\) \(\Leftrightarrow\frac{\frac{n}{2}.\left(\frac{n}{2}-1\right).\left(\frac{n}{2}-2\right)!}{2.\left(\frac{n}{2}-2\right)!}=15\) \(\Leftrightarrow\frac{\frac{n}{2}.\left(\frac{n}{2}-1\right)}{2}=15\Leftrightarrow\frac{n}{2}.\left(\frac{n}{2}-1\right)=30\Leftrightarrow n^2-2n=120\Leftrightarrow\left[\begin{array}{nghiempt}n=12\\n=-10\left(loai\right)\end{array}\right.\)

Vậy \(n=12\) thỏa mãn