K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2024

10 năm r

25 tháng 7 2018

a, AB song song với CE(gt) nên góc ABC = góc ECB

AC song song với BE(gt) nên góc ACB = góc EBC

Tam giác ABC = Tam giác ECB (g.c.g) nên AC=BE (2 cạnh tương ứng)

Mà AC =BD (gt) do đó: BD =BE

 Vậy tam giác BDE cân tại B

b, Tam giác BDE cân tại B (cmt) suy ra: góc BDC =góc E (t/c)

AC song song với BE(gt) nên góc ACD = góc E (đồng vị)

Tam giác ACD = tam giác BDC (c.g.c)

c, 2 tam giác bằng nhau trên suy ra: góc ADC = góc BCD

Vậy ABCD là hình thang cân (định nghĩa)

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

1
NM
24 tháng 9 2021

undefinedbạn chịu khó nhìn chữ viết tay nhé

a: Ta có: AB//CD

=>\(\hat{OAB}=\hat{ODC}\) (hai góc đồng vị) và \(\hat{OBA}=\hat{OCD}\) (hai góc đồng vị)

\(\hat{ODC}=\hat{OCD}\)

nên \(\hat{OAB}=\hat{OBA}\)

=>ΔOAB cân tại O

b: Xét ΔABD và ΔBAC có

BA chung

BD=AC

AD=BC

Do đó: ΔABD=ΔBAC
c: ΔABD=ΔBAC

=>\(\hat{ABD}=\hat{BAC}\)

=>\(\hat{EAB}=\hat{EBA}\)

=>EA=EB

Ta có: EA+EC=AC

EB+ED=BD

mà EA=EB và AC=BD

nên EC=ED

d: Ta có: OA+AD=OD

OB+BC=OC

mà AO=OB và AD=BC

nên OD=OC

=>O nằm trên đường trung trực của DC(1)

Ta có: EC=ED
=>E nằm trên đường trung trực của CD(2)

Từ (1),(2) suy ra OE là đường trung trực của CD

=>OE đi qua trung điểm của CD

=>O,E,trung điểm của CD thẳng hàng

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC