Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ABCD1520HI
a)
\(\Delta ABC\)vuông tại A
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=20\left(cm\right)\)
BD là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{20}{15+25}=\frac{1}{2}\)
\(\Leftrightarrow\frac{AD}{AB}=\frac{1}{2}\Rightarrow AD=\frac{AB}{2}=\frac{15}{2}=7,5\left(cm\right)\)
b)
Xét \(\Delta ABC\)và \(\Delta HBA\)CÓ:
\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)
\(\widehat{ABC}\)là góc chung (gt)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}=\frac{AC}{AH}\Rightarrow\hept{\begin{cases}AH=\frac{AB.AC}{BC}\\HB=\frac{AB^2}{BC}\end{cases}\Leftrightarrow\hept{\begin{cases}AH=\frac{15.20}{25}=12\left(cm\right)\\HB=\frac{15^2}{25}=9\left(cm\right)\end{cases}}}\)
c)
Xét \(\Delta ABD\)và \(\Delta HBI\)có;
\(\widehat{BAD}=\widehat{BHI}=90^o\)
\(\widehat{ABD}=\widehat{HBI}\left(gt\right)\)
SUY RA \(\Delta ABD\)đồng dạng với \(\Delta HBI\)(g.g)
\(\Rightarrow\frac{AB}{HB}=\frac{BD}{BI}\Leftrightarrow AB.BI=BD=HB\)
d)
\(\Delta ABD\)đồng dạng với \(\Delta HBI\) ( Theo câu c)
\(\frac{AD}{HI}=\frac{AB}{HB}\Rightarrow HI=\frac{AD.HB}{AB}=\frac{7,5.9}{15}=4,5\left(cm\right)\)
Ta có:
\(AI=AH-HI=12-4,5=7,5\left(cm\right)\)
Mà AD=7,5 cm
nên \(\Delta ADI\)cân tại A
e)
\(\Delta ABD\)đồng dạng vớI \(\Delta HBI\)( Theo câu c)
\(\Rightarrow\frac{AD}{IH}=\frac{BD}{BI}\Leftrightarrow AI.BI=BD.IH\)

a: Xét ΔDAC và ΔCBD có
DA=BC
AC=BD
DC chung
Do đó: ΔDAC=ΔCBD
=>\(\hat{DAC}=\hat{CBD}\)
=>\(\hat{DAC}=90^0\)
=>AD⊥ AC
b: ABCD là hình thang cân
=>AD=BC
mà AB=BC
nên AD=AB=BC
Ta có: AD=AB
=>ΔABD cân tại A
=>\(\hat{ABD}=\hat{ADB}\)
mà \(\hat{ABD}=\hat{BDC}\) (hai góc so le trong, AB//DC)
nên \(\hat{ADB}=\hat{CDB}\)
=>DB là phân giác của góc ADC
=>\(\hat{ADC}=2\cdot\hat{BDC}\)
Ta có: BA=BC
=>ΔBAC cân tại B
=>\(\hat{BAC}=\hat{BCA}\)
mà \(\hat{BAC}=\hat{ACD}\) (hai góc so le trong, AB//CD)
nên \(\hat{BCA}=\hat{DCA}\)
=>CA là phân giác của góc BCD
=>\(\hat{BCD}=2\cdot\hat{ACD}\)
ΔADC=ΔBCD
=>\(\hat{ACD}=\hat{BDC}\)
=>\(\hat{BDC}=\frac12\cdot\hat{BCD}\)
ΔBDC vuông tại B
=>\(\hat{BDC}+\hat{BCD}=90^0\)
=>\(\frac12\cdot\hat{BCD}+\hat{BCD}=90^0\)
=>\(1,5\cdot\hat{BCD}=90^0\)
=>\(\hat{BCD}=60^0\)
=>\(\hat{ADC}=\hat{BCD}=60^0\)
AB//CD
=>\(\hat{ABC}+\hat{BCD}=180^0\)
=>\(\hat{ABC}=180^0-60^0=120^0\)
ABCD là hình thang cân
=>\(\hat{BAD}=\hat{ABC}\)
=>\(\hat{BAD}=120^0\)
c: Kẻ OK⊥AD tại K; OE⊥DC tại E; OH⊥BC tại H
=>OK,OE,OH lần lượt là khoảng cách từ O xuống AD,DC,BC
Xét ΔDKO vuông tại K và ΔDEO vuông tại E có
DO chung
\(\hat{KDO}=\hat{EDO}\)
Do đó: ΔDKO=ΔDEO
=>OK=OE
Xét ΔCEO vuông tại E và ΔCHO vuông tại H có
CO chung
\(\hat{ECO}=\hat{HCO}\)
Do đó: ΔCEO=ΔCHO
=>OE=OH
=>OE=OH=OK
=>O cách đều hai cạnh bên và đáy lớn của hình thang cân ABCD
A B C D
Vì ABCD là hình thang cân nên \(AD=BC,\widehat{ADC}=\widehat{BCD}\)
Xét 2 tam giác ADC và BCD có: DC chung, \(\widehat{ADC}=\widehat{BCD}\), AD=BC
\(\Rightarrow\Delta ADC=\Delta BCD\left(c.g.c\right)\Rightarrow\widehat{DAC}=\widehat{CBD}=90^0\Rightarrow AC\perp AD\)