Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Gọi giao điểm của AC và BD là O trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên (SAC) giao (SBD)=SO
Xét ΔSDC có
P,N lần lượt là trung điểm của DS,DC
=>PN là đường trung bình của ΔSDC
=>PN//SC
PN//SC
SC\(\subset\)(SBC)
PN không nằm trong mp(SBC)
Do đó: PN//(SBC)

a: Xét hình thang ABCD có
M,N lần lượt là trung điểm của AB,CD
nên MN là đường trung bình
=>MN//AD//BC
=>MN//(SAD) và MN//(SBC)
b: Gọi giao của MN với BD là O
=>O thuộc (SBD) giao (MNP)
MP//SB
=>\(\left(SBD\right)\cap\left(MNP\right)=xy\left(O\in xy\right);\)xy//MP//SB

- Ta có: S là điểm chung của hai mặt phẳng (SAD) và (SBC)
Từ S kẻ Sx sao cho Sx // AD // BC. Vậy Sx là giao tuyến của hai mặt phẳng (SAD) và (SBC).
- Ta có: M, P là trung điểm của SA, SD. Suy ra MP // AD // BC
Có: N là điểm chung của hai mặt phẳng (MNP) và (ABCD)
Từ N kẻ NQ sao cho NQ // AD.
Vậy NQ là giao tuyến của hai mặt phẳng (MNP) và (ABCD).
1: Trong mp(ABCD), gọi O là giao điểm của AC và BD
O∈AC⊂(SAC)
O∈BD⊂(SBD)
Do đó: O∈(SAC) giao (SBD)(1)
S∈(SAC)
S∈(SBD)
Do đó: S∈(SAC) giao (SBD)(2)
Từ (1),(2) suy ra (SAC) giao (SBD)=SO
Xét ΔDSC có
P,N lần lượt là trung điểm của DS,DC
=>PN là đường trung bình của ΔDSC
=>PN//SC
mà SC⊂(SBC)
nên PN//(SBC)
2: Chọn mp(SAD) có chứa SA
P∈SD⊂(SAD)
P∈(MNP)
Do đó: P∈(SAD) giao (MNP)(3)
Trong mp(ABCD), gọi K là giao điểm của MN và AD
K∈MN⊂(MNP)
K∈AD⊂(SAD)
DO đó: K∈(SAD) giao (MNP)(4)
Từ (3),(4) suy ra (SAD) giao (MNP)=PK
Gọi Q là giao điểm của PK và SA
=>Q là giao điểm của (MNP) và SA
Xét ΔNCM và ΔNDK có
\(\hat{NCM}=\hat{NDK}\) (hai góc so le trong, DK//MC)
NC=ND
\(\hat{CNM}=\hat{DNK}\) (hai góc đối đỉnh)
Do đó: ΔNCM=ΔNDK
=>CM=DK
=>\(DK=\frac12BC=\frac12DA\)
=>\(KD=\frac13KA\)
Theo Meneleus, ta có:
\(\frac{KD}{KA}\cdot\frac{QA}{QS}\cdot\frac{PS}{PD}=1\)
=>\(\frac13\cdot\frac{QA}{QS}\cdot1=1\)
=>\(\frac{QA}{QS}=1:\frac13=3\)
=>QA=3QS
SQ+QA=SA
=>SA=SQ+3SQ=4SQ
=>\(\frac{SQ}{SA}=\frac14\)