y=\( x^3-3mx^2+2\) có đồ thị <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2017

Lời giải:

\(y=x^3-3mx^2+2\Rightarrow y'=3x^2-6mx=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=2m\end{matrix}\right.\)

Cực trị \(\left\{\begin{matrix} A(0,2)\\ B(2m,2-4m^3)\end{matrix}\right.\)

Nếu \(m>0\) thì cực tiểu là \(B\). Khi đó khoảng cách từ \(B\mapsto \Delta\)

\(d=\frac{|-2m-(2-4m^3)+2|}{\sqrt{2}}=\sqrt{2}\Leftrightarrow |2m^3-m|=1\)

Đến đây xét TH để phá trị tuyệt đối ta thu được \(m=1\) thoả mãn

Nếu \(m<0\) thì cực tiểu là $A$

\(d=\frac{|-0-2+2|}{\sqrt{2}}=0\neq \sqrt{2}\) nên loại

Vậy tổng tất cả các giá trị $m$ thỏa mãn là $1$ , tức đáp án $C$

21 tháng 3 2017

cảm ơn bạn :)

9.Cho hàm số \(f\left(x\right)=\frac{4m}{\pi}+sin^2x\). Tìm m để nguyên hàm F(x) của f(x) thỏa F(0)=1 và \(F\left(\frac{\pi}{4}\right)=\frac{\pi}{8}\): \(A.m=-\frac{4}{3}\) \(B.m=\frac{3}{4}\) \(C.m=\frac{4}{3}\) \(D.m=-\frac{3}{4}\) 10.Trên mặt bàn, có một cái bánh kem hình chuông úp ngược. Mỗi lát cắt của bánh song song với mặt bàn đều là hình tròn, lát cắt dọc đi qua đỉnh bánh có dạng đồ thị của một...
Đọc tiếp

9.Cho hàm số \(f\left(x\right)=\frac{4m}{\pi}+sin^2x\). Tìm m để nguyên hàm F(x) của f(x) thỏa F(0)=1 và \(F\left(\frac{\pi}{4}\right)=\frac{\pi}{8}\): \(A.m=-\frac{4}{3}\) \(B.m=\frac{3}{4}\) \(C.m=\frac{4}{3}\) \(D.m=-\frac{3}{4}\)

10.Trên mặt bàn, có một cái bánh kem hình chuông úp ngược. Mỗi lát cắt của bánh song song với mặt bàn đều là hình tròn, lát cắt dọc đi qua đỉnh bánh có dạng đồ thị của một parabol. Người ta muốn cắt ngang cái bánh để chia nó thành hai phần có thể tích bằng nhau. Biết rằng bánh cao 36cm36cm và bán kính đường tròn đáy là 6cm.6cm. Hỏi nhát cắt cần tìm có độ cao hh so với mặt bàn là bao nhiêu cm? A.\(h=9\sqrt{2}\) B.\(h=18\) C.\(h=18\left(2-\sqrt{2}\right)\) D.\(h=18-4\sqrt{2}\)

11.Tính nguyên hàm \(I=\int\frac{dx}{cosx}\) được kết quả \(I=ln\left|tan\left(\frac{x}{a}+\frac{\pi}{b^2}\right)\right|+C\) với \(a,b,c\in Z\). Giá trị của \(a^2-b\) là: A.8 B.0 C.2 D.4

3
29 tháng 3 2019

tick mk cái

NV
9 tháng 6 2019

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow mx-\sqrt{x-3}=m+1\Leftrightarrow m\left(x-1\right)=\sqrt{x-3}+1\)

\(\Leftrightarrow m=\frac{\sqrt{x-3}+1}{x-1}\)

Đặt \(\sqrt{x-3}=t\ge0\) \(\Rightarrow x=t^2+3\Rightarrow m=\frac{t+1}{t^2+2}\)

Xét hàm \(f\left(t\right)=\frac{t+1}{t^2+2}\Rightarrow f'\left(t\right)=\frac{t^2+2-2t\left(t+1\right)}{\left(t^2+2\right)^2}=\frac{-t^2-2t+2}{\left(t^2+2\right)^2}\)

\(f'\left(t\right)=0\Rightarrow t=\sqrt{3}-1\)

Ta có \(f\left(\sqrt{3}-1\right)=\frac{1+\sqrt{3}}{4}\); \(\lim\limits_{t\rightarrow+\infty}\frac{t+1}{t^2+1}=0\); \(f\left(0\right)=\frac{1}{2}\)

Dựa vào BBT, để pt đã cho có 2 nghiệm pb thì \(\frac{1}{2}\le m< \frac{1+\sqrt{3}}{4}\)

NV
18 tháng 1 2024

\(s\left(t\right)=v_0.t+\dfrac{1}{2}at^2=25t-\dfrac{49}{10}t^2\)

\(s'\left(t\right)=25-\dfrac{49}{5}t=0\)

\(\Rightarrow t=\dfrac{125}{49}\)

Vậy sau \(\dfrac{125}{49}\left(s\right)\) viên đạn sẽ đạt độ cao lớn nhất

1 f(x) là một nguyên hàm của hàm số f(x)=1/2x-1 biết f(1)=2 . tính f(2) 2 cho hàm số f(x) liên tục trên R và F(x) là nguyên hàm của f(x) biết \(\int_0^9\) f(x)dx=9 và f(0)=3. tính f(9) 3 biết f(x) là một nguyên hàm của hàm số f(x) =1/2x+1 và f(0)=1. tính giá trị f(2) 4 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xe^x , trúc hoành và hai đường thẳng x=-2, x=3 có công thức là 5 diện tích hình phẳng...
Đọc tiếp

1 f(x) là một nguyên hàm của hàm số f(x)=1/2x-1 biết f(1)=2 . tính f(2)

2 cho hàm số f(x) liên tục trên R và F(x) là nguyên hàm của f(x) biết \(\int_0^9\) f(x)dx=9 và f(0)=3. tính f(9)

3 biết f(x) là một nguyên hàm của hàm số f(x) =1/2x+1 và f(0)=1. tính giá trị f(2)

4 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xe^x , trúc hoành và hai đường thẳng x=-2, x=3 có công thức là

5 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=-x^2 +4 , trục hoành và các đường thẳng x=0,x=3 là

6 diện tích giới hạn bởi đường thẳng x=0,x=\(\pi\) đồ thị hàm số cosx và trục ox la

7 công thức tính diện tích hình phẳng giới hạn bởi đồ thị y=f(x) trục ox và hai đường thẳng x=a, x=b (a<b) là

8diện tích hình phẳng giới hạn bởi đồ thị hàm số y =x^2+3 và y=4x là

9 ính diện tích hình phẳng giới hạn bởi y=-x^2+2x;y=-3x

10 diện tích hình phẳng giới hạn bởi hai đường hảng x=0,x=\(\pi\) , đồ thị hàm số y=cosx và trục ox là

11 gọi S là diện tích hình phẳng giới hạn bởi các đường y=x^3,y=2 và y=0 là

12 tính thể tích V của vật ròn xoay tạo thành khi quay hình phẳng (h) giới hạn bởi các đường y=x^2;y=\(\sqrt{x}\) quanh trục ox

13 cho phần vậy thể B giới hạn bởi hai mặt phẳng có phương trình x=0, x-\(\frac{\pi}{3}\)cắt phần vật thể B bởi mặ phẳng vuông góc trục ox tại điểm có hoành độ x(0\(\le x\le\frac{\pi}{3}\) ta được thiết diện là mộ tam giác vuông có độ dài hai cạnh lần lượt là 2x và cosx. thể tích vật thể B là

14 thể tích V của vật thể nằm giữa hai mặt phẳng x=0 , x= \(\pi\) biết rằng thiết diện của vật có thể bị cắt bởi mặt phẳng vuông góc trục ox tại điểm có hoành độ x \(0\le x\le1\) được thiết diện là hình vuông có cạnh (x+1)

15 Tính thể tích của vật thể nằm giữa hai mặt phẳng x=−1x=−1x=1x=1, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục OxOx có hoành độ x(−1≤x≤1)x(−1≤x≤1) là một tam giác vuông cân với cạnh 2\(\sqrt{1-x^2}\) thể tích vật thể là

16 cho hai số phức z=a+bi ,\(z^,\)=c+di. hai số phức z=\(z^,\) khi

a {a=c, bi=di} B {a=d,b=c} C {a=c,b=d} D(a=b,c=d}

17cho số phức z=3-2i tim phẩn ảo của số phức liên hợp z

18 cho số phức z= 3+2i . tìm phần thực của số phức z^2

19 cho hai số phức z=1+3i ,w=2-i tim phẩn ảo của số phức u=\(\overline{z}\) .w

20 trong mặt phẳng oxy, cho điểm A(4,0),B(1;4) và C(1;-1) . GỌI G là trọng tâm tam giác ABC . Biết rằng G là biểm biểu diễn số phức z là

A z=3+3/2i B=3-3/2i C z=2-i D z=2+i

21 cho số phức thỏa (1-i)+4\(4\overline{z}\) =7-7i .Mô đun của số phức z là

7
NV
16 tháng 5 2020

19.

\(\overline{z}=1-3i\)

\(\Rightarrow u=\left(1-3i\right)\left(2-i\right)=2+3i^2-7i=-1-7i\)

Phần ảo bằng -7

20.

Tọa độ G: \(\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}=2\\y_G=\frac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)

Biểu diễn trên mặt phẳng phức: \(z=2+i\)

21.

Đề đúng là \(\left(1-i\right)+44\overline{z}=7-7i\) chứ?

\(\Rightarrow44\overline{z}=6-6i\Rightarrow\overline{z}=\frac{3}{22}-\frac{3}{22}i\)

\(\Rightarrow z=\frac{3}{22}+\frac{3}{22}i\Rightarrow\left|z\right|=\sqrt{\left(\frac{3}{22}\right)^2+\left(\frac{3}{22}\right)^2}=\frac{3\sqrt{2}}{22}\)

NV
16 tháng 5 2020

15.

Diện tích thiết diện:

\(S=\frac{1}{2}\left(2\sqrt{1-x^2}\right)^2=2\left(1-x^2\right)=2-2x^2\)

Thể tích:

\(S=\int\limits^1_{-1}\left(2-2x^2\right)dx=\frac{8}{3}\)

16.

\(z=z'\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) (phần thực bằng phần thực, phần ảo bằng phần ảo)

17.

\(\overline{z}=3+2i\Rightarrow\) phần ảo là 2 (không phải 2i đâu)

18.

\(z=3+2i\Rightarrow z^2=\left(3+2i\right)^2=9+4i^2+12i=5+12i\)

\(\Rightarrow\) phần thực bằng 5

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Lời giải:

Ta có: \(P=(1-i)^2+(1-i)^4+....+(1-i)^{2018}\)

\(P(1-i)^2=(1-i)^4+(1-i)^6+...+(1-i)^{2020}\)

\(\Rightarrow P(1-i)^2-P=(1-i)^{2020}-(1-i)^2\)

Để ý \((1-i)^2=-2i\) \(\Rightarrow (1-i)^{2020}=-2^{1010}\)

\(\Rightarrow -P(2i+1)=-2^{1010}+2i\Rightarrow P=\frac{2^{1010}-4-i(2+2^{1011})}{5}\)

\(\Rightarrow a=\frac{2^{1010}-4}{5};b=\frac{-(2+2^{2011})}{5}\)

\(\Rightarrow 5(a-b)=3.2^{1010}-2\). Đáp án A

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải

Từ bảng biến thiên ta thấy ĐTHS có 2 điểm cực trị.

Điểm cực đại: \((-1;5)\)

Điểm cực tiểu: \((3;1)\)