K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

Vì y’ = 12 x 2 + m nên m ≥ 0; y” = –6( m 2  + 5m)x + 12m

    +) Với m  ≥  0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).

Vậy hàm số (1) luôn luôn đồng biến khi m  ≥ 0; y” = –6( m 2  + 5m)x + 12m

    +) Với m < 0 thì y = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra:

y’ > 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y’ < 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số (1) đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và nghịch biến trên khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

19 tháng 1 2018

a) y = 4 x 3  + x, y′ = 12 x 2 + 1 > 0, ∀ x ∈ R

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Giả sử tiếp điểm cần tìm có tọa độ (x0; y0) thì f′(x0) = 12 x 0 2  + 1 = 13 (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: x0 = 1 hoặc x0 = -1

Vậy có hai tiếp tuyến phải tìm là y = 13x + 8 hoặc y = 13x - 8

c) Vì y’ = 12 x 2  + m nên m ≥ 0; y” = –6( m 2  + 5m)x + 12m

    +) Với m ≥ 0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).

Vậy hàm số (1) luôn luôn đồng biến khi m ≥ 0; y” = –6( m 2  + 5m)x + 12m

    +) Với m < 0 thì y = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó suy ra:

y’ > 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y’ < 0 với

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số (1) đồng biến trên các khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và nghịch biến trên khoảng

Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

31 tháng 3 2017

a) . Tập xác định : R {} ;

;

Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Tiệm cận đứng ∆ : x = .

A(-1 ; ) ∈ ∆ ⇔ = -1 ⇔ m = 2.

c) m = 2 => .



19 tháng 4 2016

Ta có : \(y'=\frac{m^2-4}{\left(x-m\right)^2},x\ne m\) nên hàm số (1) đồng biến trên khoảng (-\(\infty\);3] khi và chỉ khi \(\begin{cases}y'>0,x\in\left(-\infty;3\right)\\m\notin\left(-\infty;3\right)\end{cases}\)\(\begin{cases}m^2-4>0\\m>3\end{cases}\)

\(\Leftrightarrow\)m<-2 hoặc m>2 và m>3 <=> m>3

Vậy m>3 thì hàm số đồng biến trên khoảng (-\(\infty\);3]

19 tháng 4 2016

Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)

Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\)  và thỏa mãn :

\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)

                    \(\Leftrightarrow m=2\) hoặc \(m=-3\)

Kết luận  \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4

 

 

31 tháng 3 2017

a) Điểm (-1 ; 1) thuộc đồ thị của hàm số ⇔ .

b) m = 1 . Tập xác định : R.

y' = 0 ⇔ x = 0.

Bảng biến thiên:

Đồ thị như hình bên.

c) Vậy hai điểm thuộc (C) có tung độ là A(1 ; ) và B(-1 ; ). Ta có y'(-1) = -2, y'(1) = 2.

Phương trình tiếp tuyến với (C) tại A là : y - = y'(1)(x - 1) ⇔ y = 2x -

Phương trình tiếp tuyến với (C) tại B là : y - = y'(-1)(x + 1) ⇔ y = -2x - .

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số