Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :
a) Gọi ba số tự nhiên liên tiếp là : a; ( a + 1); ( a + 2 )
Ta có :
a + ( a + 1 ) + ( a + 2 )
= 3a + 3 chia hết cho 3
Vậy : ..........
b) Gọi bốn số tự nhiên liên tiếp là : b; ( b + 1 ) ; ( b + 2 ); ( b + 3)
Tổng :
b + ( b + 1 ) + ( b + 2 ) + ( b + 3 )
= 4b + 6 không chia hết cho 4
Vậy : ..............
Bài 2 :
Ta có : aaa aaa = aaa x 1001 = aaa x 143 x 7 ( chia hết cho 7 ) - đpcm

* * *
câu a hình như thiếu đề
b) ab+ba
= 10a+b+10b+a
= 11a + 11b (Phần sau tự c/m vì nó dễ)
c)Hướng dẫn:phá ngoặc đi, kết quả cho ra 3n + 9,rồi lập luận
* * *
a)Gọi 5 số đó là a,a+1,a+2,a+3,a+4 ( a,a+1,a+2,a+3,a+4 \(\in\)N )
Ta có: a+(a+1)+(a+2)+(a+3)+(a+4)
= a+a+1+a+2+a+3+a+4
= 5a +( 1+2+3+4)
= 5a + 10 (Phần sau tự c/m)
b)tương tự câu a, nhưng kết quả cuối = 6a + 15 ko chia hết cho 6(gọi 6 số đó là a,a+1,a+2,a+3,a+4,a+5(a,a+1,...)...)
Hok tốt!!!! ^_^

a: 2n+4 là bội của n-1
=>2n+4⋮n-1
=>2n-2+6⋮n-1
=>6⋮n-1
=>n-1∈{1;-1;2;-2;3;-3;6;-6}
=>n∈{2;0;3;-1;4;-2;7;-5}
mà n là số tự nhiên
nên n∈{2;0;3;4;7}
b: 2n-1 là ước của 3n+2
=>3n+2⋮2n-1
=>6n+4⋮2n-1
=>6n-3+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
mà n là số tự nhiên
nên n∈{1;0;4}
c: n-1 là ước của \(n^2+1\)
=>\(n^2+1\vdots n-1\)
=>\(n^2-n+n-1+2\vdots n-1\)
=>\(2\vdots n-1\)
=>n-1∈{1;-1;2;-2}
=>n∈{2;0;3;-1}
mà n là số tự nhiên
nên n∈{2;0;3}
d: \(n^2+3n+15\) là bội của n+3
=>\(n^2+3n+15\vdots n+3\)
=>n(n+3)+15⋮n+3
=>15⋮n+3
=>n+3∈{1;-1;3;-3;5;-5;15;-15}
=>n∈{-2;-4;0;-6;2;-8;12;-18}
mà n là số tự nhiên
nên n∈{0;2;12}

a: 2n+4 là bội của n-1
=>2n+4⋮n-1
=>2n-2+6⋮n-1
=>6⋮n-1
=>n-1∈{1;-1;2;-2;3;-3;6;-6}
=>n∈{2;0;3;-1;4;-2;7;-5}
mà n là số tự nhiên
nên n∈{2;0;3;4;7}
b: 2n-1 là ước của 3n+2
=>3n+2⋮2n-1
=>6n+4⋮2n-1
=>6n-3+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
mà n là số tự nhiên
nên n∈{1;0;4}
c: n-1 là ước của \(n^2+1\)
=>\(n^2+1\vdots n-1\)
=>\(n^2-n+n-1+2\vdots n-1\)
=>\(2\vdots n-1\)
=>n-1∈{1;-1;2;-2}
=>n∈{2;0;3;-1}
mà n là số tự nhiên
nên n∈{2;0;3}
d: \(n^2+3n+15\) là bội của n+3
=>\(n^2+3n+15\vdots n+3\)
=>n(n+3)+15⋮n+3
=>15⋮n+3
=>n+3∈{1;-1;3;-3;5;-5;15;-15}
=>n∈{-2;-4;0;-6;2;-8;12;-18}
mà n là số tự nhiên
nên n∈{0;2;12}

a) Để n + 2 ⋮ n thì 2 ⋮ n => n \(\in\)Ư(2) = {1; 2}
Vậy n = {1; 2}
b)Để 3n + 5 ⋮ n thì 5 ⋮ n => n \(\in\)Ư(5) = {1; 5}
Vậy n = {1; 5}
c) Để : 18 - 5n ⋮ n thì 18 ⋮ n => \(\in\)Ư(18) = {1; 2; 3; 6; 9; 18}
Vậy n = {1;2;3;6;9;18}

ta có (3n+14) chia hết cho (n+2)
=> 3(n+2)+8 chia hết cho n+2
=>8 chia hết cho n +2
các ước của 8 là {±1,±2,±4,±8}
nếu n+2=1
=>n=-1
nếu n+2=-1
=>n=-3
còn lại bn tự xét n là ra hết luôn.
3n+14⋮n+2
=>3n+6+8⋮n+2
=>8⋮n+2
mà n+2>=2(do n là số tự nhiên)
nên n+2∈{2;4;8}
=>n∈{0;2;6}
Đáp án là D
Số liền trước số 99 là số 98 nên có ba số tự nhiên liên tiếp là 98; 99; 100.
Số liền sau số 100 là số 101 nên có ba số tự nhiên liên tiếp là 99; 100; 101.