Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Các cặp góc kề bù
\(\widehat{xOy}\) và \(\widehat{yOx'}\)
\(\widehat{yOx'}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy'}\) và \(\widehat{xOy'}\)
\(\widehat{xOy'}\) và \(\widehat{xOy}\)
Các cặp góc đối:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{y'Ox}\)
b) Do \(\widehat{xOy}\) kề bù với \(\widehat{xOy'}\)
\(\Rightarrow\widehat{xOy}+\widehat{xOy'}=180^o\)
\(\Rightarrow\widehat{xOy'}=180^o-70^o=110^o\)

sai đề rồi hai góc kề bù tạo bởi hai tia đối nhau có tổng số đo bằng 180o

a) Vì \(MOP-MOQ\) là hai góc kề bù, ta có :
\(MOQ=180^0_{ }-MOP=180^0_{ }-70^0_{ }\)
\(\Rightarrow MOQ=110^0_{ }\)
Áp dụng tính chất hai góc đối đỉnh, ta có :
\(MOP=NOQ\)
\(MOQ=PON\)
b) Vì \(Ot\) là tia phân giác của \(MOP\Rightarrow TOP=TOM=\frac{1}{2}MOP=\frac{110}{2}=55^0_{ }\)
Vì \(POT-QOT'\) là hai góc đối đỉnh \(\Rightarrow POT=QOT'=55^0_{ }\left(1\right)\)
Vì \(MOT-NOT'\)là hai góc đối đỉnh \(\Rightarrow MOT=NOT'=55^0_{ }\left(2\right)\)
Từ \(\left(1\right)-\left(2\right)\Rightarrow OT'\)là tia phân giác của \(NOQ\)
c) \(POT-QOT'\)
\(MOT-NOT'\)
\(POM-NOQ\)

Giải
_ Ta có \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_ \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)

a) ta có O1+O2=180=> O2=180-O1=180-36=144
TA CÓ : O1=O3 =36 ( đối đỉnh )
O2=O4 =144 ( đối đỉnh)
b) ta có góc tOt'= góc tOx+O4+góc y'Ot'= \(\frac{36}{2}\)+144+ \(\frac{36}{2}\)=180
=> Ot và Ot' nằm trên cùng đường thẳng
mặt khác Ot và Ot' cùng chung gốc O
=> Ot và Ot' là 2 tia đối
0 1 2 3 4 x x' y y' t t'
a: Các góc kề bù với góc xOy là \(\hat{xOy^{\prime}};\hat{x^{\prime}Oy}\)
Các cặp góc đối đỉnh là:
\(\hat{xOy^{\prime}};\hat{x^{\prime}Oy}\) ; \(\hat{xOy};\hat{x^{\prime}Oy^{\prime}}\)
b: Sửa đề: Tính số đo của \(\hat{x^{\prime}Ot}\)
Ta có: \(\hat{xOy^{\prime}}+\hat{xOy}=180^0\) (hai góc kề bù)
=>\(\hat{xOy^{\prime}}=180^0-80^0=100^0\)
Ot là phân giác của góc xOy'
=>\(\hat{xOt}=\frac{100^0}{2}=50^0\)
Ta có: \(\hat{xOt}+\hat{x^{\prime}Ot}=180^0\) (hai góc kề bù)
=>\(\hat{x^{\prime}Ot}=180^0-50^0=130^0\)