Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cộng 2 biểu thức lại thành 3P
Tìm ra P
Thay P vào P-Q tìm được Q

Bài 1:A=4x4+7x2y2+3y4+5y2=4x2(x2+y2)+3y2(x2+y2)+5y2=20x2+15y2+5y2=20(x2+y2)=100.
A=4x4+7x2y2+3y4+5y2
=4x2(x2+y2)+3y2(x2+y2)+5y2
=20x2+15y2+5y2
=20x2+(15+5)y2
=20(x2+y2)=100

a) Tính A - B và B - A:
Cho hai đa thức:
A=x2y+2xy2−7x2y2+x4A = x^2y + 2xy^2 - 7x^2y^2 + x^4
B=5x2y2−2y2x−yx2−3x4−1B = 5x^2y^2 - 2y^2x - yx^2 - 3x^4 - 1
1. Tính A - B:
\[ A - B = (x^2y + 2xy^2 - 7x2y2 + x^4) - (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) \]
= x2y+2xy2−7x2y2+x4−5x2y2+2xy2+yx2+3x4+1x^2y + 2xy^2 - 7x^2y^2 + x^4 - 5x^2y^2 + 2xy^2 + yx^2 + 3x^4 + 1
= x2y+2xy2−12x2y2+4x4+1x^2y + 2xy^2 - 12x^2y^2 + 4x^4 + 1
2. Tính B - A:
\[ B - A = (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) - (x^2y + 2xy^2 - 7x2y2 + x^4) \]
= 5x2y2−2y2x−yx2−3x4−1−x2y−2xy2+7x2y2−x45x^2y^2 - 2y^2x - yx^2 - 3x^4 - 1 - x^2y - 2xy^2 + 7x^2y^2 - x^4
= 12x2y2−2xy2−yx2−4x4−112x^2y^2 - 2xy^2 - yx^2 - 4x^4 - 1
b) Tìm GTLN của đa thức A + B:
\[ A + B = (x^2y + 2xy^2 - 7x2y2 + x^4) + (5x2y2 - 2y^2x - yx^2 - 3x^4 - 1) \]
= x2y+2xy2−2x2y2−2y2x−2x4−1x^2y + 2xy^2 - 2x^2y^2 - 2y^2x - 2x^4 - 1
Với đa thức A+B=x2y+2xy2−2x2y2−2y2x−2x4−1A + B = x^2y + 2xy^2 - 2x^2y^2 - 2y^2x - 2x^4 - 1, để tìm giá trị lớn nhất, ta cần phải khảo sát hàm số bằng cách đạo hàm theo biến x và y rồi tìm các giá trị cực đại trên miền xác định của biến x và y. Tuy nhiên, việc này thường phức tạp và cần các kỹ thuật tính toán sâu hơn, không thể thực hiện một cách ngắn gọn.

Khẳng định (A) 3x2y3 và 3x3y2 là hai đơn thức đồng dạng : Sai