Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA⊥BC tại H và H là trung điểm của BC
b: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>CB⊥CD
mà OA⊥BC
nên OA//CD
c: Ta có: \(\hat{FBA}+\hat{OBF}=\hat{OBA}=90^0\)
\(\hat{HBF}+\hat{OFB}=90^0\) (ΔBHF vuông tại H)
mà \(\hat{OBF}=\hat{OFB}\) (ΔOBF cân tại O)
nên \(\hat{FBA}=\hat{HBF}\)
=>BF là phân giác của góc HBA
Xét (O) có
ΔBFE nội tiếp
FE là đường kính
Do đó: ΔBFE vuông tại B
=>BF⊥BE
=>BE là phân giác ngoài tại đỉnh B của ΔHBA
Xét ΔHBA có BF là phân giác của góc HBA
nên \(\frac{FH}{FA}=\frac{BH}{BA}\left(3\right)\)
Xét ΔHBA có BE là phân giác ngoài tại đỉnh B
nên \(\frac{EH}{EA}=\frac{BH}{BA}\left(4\right)\)
Từ (3),(4) suy ra \(\frac{FH}{FA}=\frac{EH}{EA}\)
=>\(FH\cdot EA=FA\cdot EH\)

Bài 1:
a: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{ABO}=\widehat{ACO}=90^0\)
hay AC là tiếp tuyến của (O)
b: Xét (O) có
OI là một phần đường kính
CE là dây
OI⊥CE tại I
Do đó: I là trung điểm của CE
Xét ΔDCE có
DI là đường cao
DI là đường trung tuyến
Do đó: ΔDCE cân tại D
Xét ΔOED và ΔOCD có
OE=OC
ED=CD
OD chung
Do đó: ΔOED=ΔOCD
Suy ra: \(\widehat{OED}=\widehat{OCD}=90^0\)
hay DE là tiếp tuyến của (O)

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.
Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:
\(BC.BM=AB^2=4R^2\)
b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA
Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)
\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)
Hay IC là tiếp tuyến tại C của nửa đường tròn.
c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:
\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)
Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.
Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\) (1)
Xét tam giác vuông MAB, theo Pi-ta-go ta có:
\(MB^2=MA^2+AB^2=MA^2+4R^2\) (2)
Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)
d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)
Tương tự \(\widehat{CEO}=90^o\)
Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.
Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.
Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.
Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.
Vậy đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.

a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Sửa đề: \(BC\cdot MC=AC^2\)
Xét ΔABM vuông tại A có AC là đường cao
nên \(CB\cdot CM=CA^2\)
c: ΔACM vuông tại C
mà CN là đường trung tuyến
nên NA=NC=NM
Xét ΔNAO và ΔNCO có
NA=NC
NO chung
AO=CO
Do đó: ΔNAO=ΔNCO
=>\(\hat{NAO}=\hat{NCO}\)
=>\(\hat{NCO}=90^0\)
=>NC là tiếp tuyến của (O)
d: Xét (O) có
DC,DB là các tiếp tuyến
Do đó: DC=DB và OD là phân giác của góc BOC
OD là phân giác của góc BOC
=>\(\hat{BOC}=2\cdot\hat{COD}\)
ΔNAO=ΔNCO
=>\(\hat{NOA}=\hat{NOC}\)
=>ON là phân giác của góc COA
=>\(\hat{COA}=2\cdot\hat{CON}\)
Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)
=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)
=>\(2\cdot\hat{NOD}=180^0\)
=>\(\hat{NOD}=90^0\)
e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)
Xét ΔOND vuông tại O có OC là đường cao
nên \(CN\cdot CD=OC^2\)
=>\(NA\cdot BD=OC^2=R^2\)
f: Gọi K là trung điểm của ND
=>K là tâm đường tròn đường kính ND
ΔNOD vuông tại O
mà OK là đường trung tuyến
nên OK=KN=KD
=>K là tâm đường tròn ngoại tiếp ΔNOD
Xét hình thang ABDN có
K,O lần lượt là trung điểm của ND,AB
=>KO là đường trung bình của hình thang ABDN
=>KO//AN//BD
=>KO⊥AB tại O
Xét (K) có
KO là bán kính
AB⊥KO tại O
Do đó: AB là tiếp tuyến của (K)
=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN
g:
\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)
\(BD\cdot AN=R^2\)
=>\(\frac{BD}{R}=\frac{R}{AN}\)
=>\(\frac{BD}{AO}=\frac{BO}{AN}\)
=>\(\frac{BD}{AO}=\frac{BA}{AM}\)
Xét ΔBAD vuông tại B và ΔAMO vuông tại A có
\(\frac{BA}{AM}=\frac{BD}{AO}\)
Do đó: ΔBAD~ΔAMO
=>\(\hat{BAD}=\hat{AMO}\)
mà \(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)
nên \(\hat{AMO}+\hat{MAD}=90^0\)
=>OM⊥AD tại I
h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)
nên AICM là tứ giác nội tiếp đường tròn đường kính AM
mà N là trung điểm của AM
nên A,M,C,I cùng thuộc đường tròn (N)
a, Gọi I là trung điểm của AB, ta có: OI = OA – IA
b, Ta chứng minh được IC//BD//OE
Mà OB = BI = IA => AC = CD = DE