\(\Delta ABC\) vuông cân tại A. Kẻ AM là trung tuyến của \(\Delt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90° 
=> ^ABH = ^CAH 
Xét ▲ABH và ▲CAK có: 
^H = ^C (= 90°) 
AB = AC (T.g ABC vuông cân) 
^ABH = ^CAH (cmt) 
=> △ABH = △CAK (c.h-g.n) 
=> BH = AK 
b) Ta có BH//CK (Cùng ┴ AK) 
=>^HBM = ^MCK (SLT)(1) 
Mặt khác ^MAE + ^AEM = 90°(2) 
Và ^MCK + ^CEK = 90°(3) 
Nhưng ^AEM = ^CEK (đ đ)(4) 
Từ 2,3,4 => ^MAE = ^ECK (5) 
Từ 1,5 => ^HBM = ^MAE 
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC 
Xét ▲MBH và ▲MAK có: 
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma) 
=> △MBH = △MAK (c.g.c) 
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c) 
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ 
=> ^CMK + ^HMC = 90° hay ^HMK = 90° 
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân

19 tháng 5 2017

A B C D E H K

a) Vì \(\Delta ABC\) cân tại A

=> \(\widehat{B}=\widehat{C}\)

\(\widehat{ABD}+\widehat{ABC}=180^0\) (kề bù)

\(\widehat{ACB}+\widehat{ACE}=180^0\) (kề bù)

Do đó: \(\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABC\)\(\Delta ACE\) có:

AB = AC (gt)

\(\widehat{ABD}=\widehat{ACE}\) (cmt)

DB = CE (gt)

Do đó: \(\Delta ABD=\Delta ACE\left(c-g-c\right)\)

=> \(\widehat{D}=\widehat{E}\) ( hai góc tương ứng)

Xét \(\Delta DBH\)\(\Delta ECK\) có:

\(\widehat{DHB}=\widehat{CKE}\) ( = 900)

DB = CE (gt)

\(\widehat{D}=\widehat{E}\)(cmt)

Do đó: \(\Delta DBH=\Delta ECK\) (ch -gn)

=> BH = CK (hai cạnh tương ứng)

b) Xét \(\Delta ABH\)\(\Delta ACK\) có:

CK = BH ( cmt )

\(\widehat{AHB}=\widehat{AKC}\left(=90^0\right)\)

AB = AC (gt)

Do đó: \(\Delta ABH=\Delta ACK\) ( cạnh huyền - cạnh góc vuông)

6 tháng 2 2018

a) Vì ∆ABC cân tại A nên góc ABC =góc ACB (tính chất tam giác cân)

Ta có: góc ABC + góc ABD=180o (hai góc kề bù)

góc ACB + góc ACE=180o (hai góc kề bù)

Suy ra: góc ABD = góc ACE

Xét ∆ABD và ∆ACE, ta có:

AB = AC (gt)

góc ABD = góc ACE (chứng minh trên)

BD = CE (gt)

Suy ra: ∆ABD = ∆ACE (c.g.c)

⇒ góc D = góc E (hai góc tương ứng)

Xét hai tam giác vuông BHD và CKE, ta có:

góc BHD =góc CKE=90o

BD = CE (gt)

góc D = gócE (chứng minh trên)

Suy ra: ∆BHD = ∆CKE (cạnh huyền, góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)

Xét tam giác vuông AHB và ACK, ta có:

góc AHB = gócAKC = 90o

AB = AC (gt)

BH = CK (chứng minh trên)

Suy ra: ∆ABH = ∆ACK (cạnh huyền, cạnh góc vuông)



22 tháng 8 2017

A B C M H K E

a) Xét tam giác AME và tam giác CKE: ^BHA=^AKC=900; ^AEM=^KEC (Đối đỉnh)

=> ^MAE=^KCE. Ta có: ^BAM=^ACM=450 => ^BAM+^MAE=^ACM+^KCE

=> ^BAH=^ACK => Tam giác BHA= Tam giác AKC (Cạnh huyền góc nhọn)

=> BH=AK (2 cạnh tương ứng)

b) ^ABM=^MAC=450. Mà ^ABH=^CAK => ^ABM-^ABH=^MAC-^CAK => ^MBH=^MAK

=> Tam giác MBH=Tam giác MAK (c.g.c)

c)  Tam giác MBH=Tam gics MAK (cmt) => ^BMH=^AMK (2 góc tương ứng)

=> ^AMB+^AMH=^KMH+^AMH => ^AMB=^KMH. Mà ^AMB=900.

=> ^KMH=900. Lại có MH=MK => Tam giác MHK vuông cân tại M.

24 tháng 8 2017

Tam giác AME sao bằng CKE đc bn?!

23 tháng 11 2018

Hình tự vẽ nha 

a) Vì tam giác ABC cân tại A

=> ABC = ACB (1)

Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)

Từ (1) và (2) => ABD = ACE

Xét tam giác ABD và tam giác ACE có :

AB = AC ( gt )

ABD = ACE ( cmt )

BD = CE ( gt )

=> tam giác ABD = tam giác ACE ( c-g-c )

=> D = E

Xét tam giác BHD và tam giác CKE có :

DHB = EKC ( = 900 )

BD = CE ( gt )

D = E ( cmt )

=> tam giác BHD = tam giác CKE ( ch - gn )

=> đpcm

b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )

=> HAB = KAC ( 2 góc tương ứng )

Xét tam giác AHB và tam giác AKC có :

HAB = KAC ( cmt )

AHB = AKC ( = 900 )

AB = AC ( gt )

=> tam giác AHB = tam giác AKC ( ch - gn )

=> đpcm

c) Nối H với K

Xét tam giác ADE cân tại A ( vì AD = AE )

=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)

Xét tam giác AHK cân tại A ( vì AH = AK )

\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)

Từ (1) và (2) => D = AHK

mà 1 góc này ở vị trí đồng vị

=> HK // DE hay HK // BC ( đpcm ) 

Có j lên đây hỏi nha : Group Toán Học

9 tháng 2 2016

 kẽ tam giác abc vuông cân tại A, điểm B trái , C phải sau đó lấy E đâu cx được, mình làm là lấy E ở giữa M và C, ko lấy vào trung điểm, còn lại vẽ tiếp theo bài ok.

đầu tiên chứng minh ABH^=CAK^: 

+Có: AHB^=90 độ => HAB^+HBA^=90 độ

+Có:  BAC^=HBA^+HAB^=90 độ=> BAH^+KAC^=HBA^+HAB^=> HBA^=KAC^

 chứng minh tg AHB =tg CEA(ch-gnh):AHB^=CKA^=90 độ ; AB=CA(GT) ; HBA^=KAC^(CMT)

=>AH=CK ( giải thích)

tg KEA có : AKC^=90 độ=> KEC^+KCE^=90 độ 

tg EMA có: AME^=90 độ =>MAE^+MEA^=90 độ

MEA^= KEC^(đối đỉnh)

3 điều trên suy ra KCE^=EAM^

CMĐ tg AHM =CKM(cgc): AH=CK;HAM^=KCM^;AM=MC(trung tuyến tg vuông)

=>HM=KM và AMH^=CMK^ => AHM^+HMC^=HMC^+CMK^ => AMC^=HMK^=90 độ

có HM=KM => tg HMK cân tại M ;HMK^=90 độ => tg HMK vuông cân tại M

duyệt đi olm !

8 tháng 2 2016

giúp mik với, mik rất cần

17 tháng 1 2018

vẽ hình đê bạn ơi  mình éo có rảnh để ngồi vẽ hình hộ bạn đâu 

17 tháng 1 2018

cái bn đạo kia mất lịch sự quá