\(\perp\) BC

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

A B C D M N

a) Xét \(\Delta ABC\) có :

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A

Mà có : AD là đường trung tuyến trong tam giác cân

=> AD đồng thời là đường trung trực trong tam giác cân (tính chất tam giác cân)

=> \(AD\perp BC\) (đpcm)

b) Xét \(\Delta ANC\)\(\Delta AMB\) có :

\(\widehat{A}:chung\)

\(AB=AC\left(gt\right)\)

\(\widehat{ANC}=\widehat{AMB}\left(=90^o\right)\)

=> \(\Delta ANC\) = \(\Delta AMB\) (cạnh huyền - góc nhọn)

=> AN = AM (2 cạnh góc vuông)

9 tháng 9 2018

a) Tam giác vuông ABM và tam giác vuông ACN, có:

 AB = AC (gt) và Góc chung Â

=> \(\Delta ABM=\Delta ACN\) (cạnh huyền - góc nhọn) => AM = AN.

Tam giác ABC cân tại A (AB=AC), có:

 \(BM\perp AC\)\(CN\perp AB\), cắt nhau tại H

=> H là trực tâm của tam giác ABC <=> AH là đường cao. (1)

 BK = KC (K là trung điểm)

=> AK là trung tuyến => AK là đường cao (tính chất tam giác cân) (2)

Từ (1) và (2) => A, H, K thẳng hàng.

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0

Câu 2: 

a: Ta có: ΔBDA vuông tại D

mà DM là đường trung tuyến

nên DM=AM=MB=AB/2

Xét ΔAMD có MA=MD

nên ΔMAD cân tại M

mà \(\widehat{MAD}=60^0\)

nên ΔMAD đều

Xét ΔMBD có MB=MD

nên ΔMBD cân tại M

b: Xét ΔAEN có AE=AN

nên ΔAEN cân tại A

mà \(\widehat{EAN}=60^0\)

nên ΔAEN đều

=>EN=AN=AC/2

Xét ΔAEC có

EN là đường trung tuyến

EN=AC/2

DO đo ΔAEC vuông tại E

hay CE\(\perp\)AB

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

=>ΔAIB=ΔAIC

b: ΔABC cân tại A

mà AI là trung tuyến

nên AI vuông góc CB

c: Xét ΔABM và ΔACN co

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

 

a: HB=HC=6cm

\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

b: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

DO đo: ΔABM=ΔACN

Xét ΔBDM vuông tại D và ΔCEN vuông tại E có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔBDM=ΔCEN

c: Xét ΔKBC có

KH là đường cao

KH là đường trung tuyến

Do đó:ΔKBC cân tại K

=>\(\widehat{KBC}=\widehat{KCB}\)

=>\(\widehat{KCB}=\widehat{DBM}\)

=>\(\widehat{KCB}=\widehat{ECN}\)

=>\(\widehat{KCB}+\widehat{BCE}=180^0\)

=>K,E,C thẳng hàng

Y
9 tháng 2 2019

A B C H I K M N

a) + ΔIAM = ΔIAH ( c.g.c )

\(\Rightarrow\left\{{}\begin{matrix}AM=AH\\\widehat{IAM}=\widehat{ỊAH}\end{matrix}\right.\) (1)

+ ΔKAH = ΔKAN ( c.g.c )

\(\Rightarrow\left\{{}\begin{matrix}AH=AN\\\widehat{KAH}=\widehat{KAN}\end{matrix}\right.\) (2)

+ Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}AM=AN\left(=AH\right)\\\widehat{MAN}=2\left(\widehat{IAH}+\widehat{KAH}\right)=180^o\end{matrix}\right.\)

=> AM = AN và M,A,N thẳng hàng

=> A là trung điểm của MN

b) + ΔBAH = ΔBAM ( c.g.c )

\(\Rightarrow\widehat{AHB}=\widehat{AMB}=90^o\)

+ Tương tự : \(\widehat{AHC}=\widehat{ANC}=90^o\)

Do đó : \(\widehat{AMB}+\widehat{ANC}=180^o\)

=> BM // CN

c) + IK là đường trung bình của ΔHMN

=> IK // MN