Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tam giác vuông ABM và tam giác vuông ACN, có:
AB = AC (gt) và Góc chung Â
=> \(\Delta ABM=\Delta ACN\) (cạnh huyền - góc nhọn) => AM = AN.
Tam giác ABC cân tại A (AB=AC), có:
\(BM\perp AC\) và \(CN\perp AB\), cắt nhau tại H
=> H là trực tâm của tam giác ABC <=> AH là đường cao. (1)
BK = KC (K là trung điểm)
=> AK là trung tuyến => AK là đường cao (tính chất tam giác cân) (2)
Từ (1) và (2) => A, H, K thẳng hàng.

Câu 2:
a: Ta có: ΔBDA vuông tại D
mà DM là đường trung tuyến
nên DM=AM=MB=AB/2
Xét ΔAMD có MA=MD
nên ΔMAD cân tại M
mà \(\widehat{MAD}=60^0\)
nên ΔMAD đều
Xét ΔMBD có MB=MD
nên ΔMBD cân tại M
b: Xét ΔAEN có AE=AN
nên ΔAEN cân tại A
mà \(\widehat{EAN}=60^0\)
nên ΔAEN đều
=>EN=AN=AC/2
Xét ΔAEC có
EN là đường trung tuyến
EN=AC/2
DO đo ΔAEC vuông tại E
hay CE\(\perp\)AB

a: Xét ΔAIB và ΔAIC có
AB=AC
IB=IC
AI chung
=>ΔAIB=ΔAIC
b: ΔABC cân tại A
mà AI là trung tuyến
nên AI vuông góc CB
c: Xét ΔABM và ΔACN co
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN

a: HB=HC=6cm
\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
DO đo: ΔABM=ΔACN
Xét ΔBDM vuông tại D và ΔCEN vuông tại E có
BM=CN
\(\widehat{M}=\widehat{N}\)
Do đó: ΔBDM=ΔCEN
c: Xét ΔKBC có
KH là đường cao
KH là đường trung tuyến
Do đó:ΔKBC cân tại K
=>\(\widehat{KBC}=\widehat{KCB}\)
=>\(\widehat{KCB}=\widehat{DBM}\)
=>\(\widehat{KCB}=\widehat{ECN}\)
=>\(\widehat{KCB}+\widehat{BCE}=180^0\)
=>K,E,C thẳng hàng

A B C H I K M N
a) + ΔIAM = ΔIAH ( c.g.c )
\(\Rightarrow\left\{{}\begin{matrix}AM=AH\\\widehat{IAM}=\widehat{ỊAH}\end{matrix}\right.\) (1)
+ ΔKAH = ΔKAN ( c.g.c )
\(\Rightarrow\left\{{}\begin{matrix}AH=AN\\\widehat{KAH}=\widehat{KAN}\end{matrix}\right.\) (2)
+ Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}AM=AN\left(=AH\right)\\\widehat{MAN}=2\left(\widehat{IAH}+\widehat{KAH}\right)=180^o\end{matrix}\right.\)
=> AM = AN và M,A,N thẳng hàng
=> A là trung điểm của MN
b) + ΔBAH = ΔBAM ( c.g.c )
\(\Rightarrow\widehat{AHB}=\widehat{AMB}=90^o\)
+ Tương tự : \(\widehat{AHC}=\widehat{ANC}=90^o\)
Do đó : \(\widehat{AMB}+\widehat{ANC}=180^o\)
=> BM // CN
c) + IK là đường trung bình của ΔHMN
=> IK // MN
A B C D M N
a) Xét \(\Delta ABC\) có :
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A
Mà có : AD là đường trung tuyến trong tam giác cân
=> AD đồng thời là đường trung trực trong tam giác cân (tính chất tam giác cân)
=> \(AD\perp BC\) (đpcm)
b) Xét \(\Delta ANC\) và \(\Delta AMB\) có :
\(\widehat{A}:chung\)
\(AB=AC\left(gt\right)\)
\(\widehat{ANC}=\widehat{AMB}\left(=90^o\right)\)
=> \(\Delta ANC\) = \(\Delta AMB\) (cạnh huyền - góc nhọn)
=> AN = AM (2 cạnh góc vuông)