\(\left(\dfrac{x}{x-2\sqrt{x}}+\dfrac{x}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

a) Ta có

\(P=\left(\dfrac{x}{x-2\sqrt{x}}+\dfrac{x}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\) (ĐKXĐ : \(x\ne\pm4;x\ne0\) )

\(P=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}\)

\(P=\dfrac{x+x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)

\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\sqrt{x}}=\sqrt{x}-2\)

b) \(P>0\)

\(\Rightarrow\sqrt{x}-2>0\)

\(\Rightarrow x>4\)

18 tháng 3 2021

a, Với \(x>0;x\ne4;x\ne9\)

\(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{3-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}=\frac{4x}{3-\sqrt{x}}\)

b, Ta có : A = -2 hay 

\(\frac{4x}{3-\sqrt{x}}=-2\Rightarrow4x=-6+2\sqrt{x}\)

\(\Leftrightarrow4x+6-2\sqrt{x}=0\Leftrightarrow2\left(2x+3-\sqrt{x}\right)=0\)

\(\Leftrightarrow2x+3-\sqrt{x}=0\Leftrightarrow\sqrt{x}=2x+3\)

bình phương 2 vế ta có : 

\(x=\left(2x+3\right)^2=4x^2+12x+9\)

\(\Leftrightarrow-4x^2-11x-9=0\)giải delta ta thu được : \(x=-\frac{11\pm\sqrt{23}i}{8}\)

\(a,A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)              

\(=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)

\(=\frac{4\sqrt{x}.\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2.\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)

\(=\frac{\left(4x+8\sqrt{x}\right)\left(\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)

\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)

\(=\frac{4x}{\sqrt{x}-3}\)

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

8 tháng 6 2018

a)A \(=\dfrac{\sqrt{x}+1}{x+4\sqrt{x}+4}:\left(\dfrac{x}{x+2\sqrt{x}}+\dfrac{x}{\sqrt{x}+2}\right)\)

A=\(\dfrac{\sqrt{x}+1}{\sqrt{x^2}+2.2.\sqrt{x}+2^2}:\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x}{\sqrt{x}+2}\right)\)

A\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{x+x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\)

A\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}.\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x+x\sqrt{x}}\)

A\(=\dfrac{\left(\sqrt{x}+1\right)\left[\sqrt{x}\left(\sqrt{x}+2\right)\right]}{\left(\sqrt{x}+2\right)^2.\left(x+x\sqrt{x}\right)}\)

A\(=\dfrac{\left(\sqrt{x}+1\right).\sqrt{x}}{\left(\sqrt{x}+2\right).\left[x\left(\sqrt{x}+1\right)\right]}\)

A\(=\dfrac{\sqrt{x}}{\left(\sqrt{x}+2\right).x}\)

A\(=\dfrac{1}{\left(\sqrt{x}+2\right)\sqrt{x}}\)

A\(=\dfrac{1}{x+2\sqrt{x}}\)

8 tháng 6 2018

b) \(\dfrac{1}{x+2\sqrt{x}}\ge\dfrac{1}{3\sqrt{x}}\)

\(\Leftrightarrow\dfrac{1}{x+2\sqrt{x}}-\dfrac{1}{3\sqrt{x}}\ge0\)

\(\Leftrightarrow\dfrac{3\sqrt{x}-x-2\sqrt{x}}{\left(x+2\sqrt{x}\right)\left(3\sqrt{x}\right)}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-x}{3x\sqrt{x}+6x}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(3x+6\sqrt{x}\right)}\ge0\)

\(\Leftrightarrow\dfrac{1-\sqrt{x}}{3x+6\sqrt{x}}\ge0\)

19 tháng 6 2017

Bài 1 : Rút gọn biểu thức :

\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)

\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)

\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)

\(=-10\sqrt{2}+10-7+30\sqrt{2}\)

\(=20\sqrt{2}+3\)

19 tháng 6 2017

Bài 2:

a) ĐKXĐ : x # 4 ; x # - 4

P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)

P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\)

Vậy, để P = 2 thì x = 16.

8 tháng 1 2018

a) A=\(\dfrac{\sqrt{x}[\left(\sqrt{x}\right)^3-1]}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

A=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\) A=\(\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)

A=\(x-\sqrt{x}+1\)

b) A=\(\dfrac{3}{4}\)

=> \(x-\sqrt{x}+1=\dfrac{3}{4}\)

\(x-\sqrt{x}+\dfrac{1}{4}=0\)

\(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\)

=> \(\sqrt{x}=\dfrac{1}{2}\)

=> \(x=\dfrac{1}{4}\)

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

12 tháng 7 2018

\(B=\left(\dfrac{x}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\\ ĐKXĐ:x\ge0;x\ne4\\ =\left(\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\dfrac{10-x}{\sqrt{x}+2}\right)\\ =\dfrac{x-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{x-4+10-x}{\sqrt{x}+2}\\ =\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{6}{\sqrt{x}+2}\\ =\dfrac{x-3\sqrt{x}+2\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{6}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)}{6\left(\sqrt{x}-2\right)}\\ =\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{6\left(\sqrt{x}-2\right)}\)

b) Với \(x\ge0;x\ne4\)

\(\Rightarrow\) Để B>0

thì \(\Rightarrow\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}{6\left(\sqrt{x}-2\right)}>0\)

\(\Rightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}>0\left(Vì\text{ }\sqrt{x}+2;6>0\right)\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-3< 0\\\sqrt{x}-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-2< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}>3\\\sqrt{x}< 2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>9\\x< 4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge9\\0< x< 4\end{matrix}\right.\)

12 tháng 7 2018

b) \(B>0\Leftrightarrow\dfrac{-1}{\sqrt{x}-2}>0,do-1< 0\Rightarrow B>0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)