Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tam giác HIE và HFA đồng dạng do có góc tại đỉnh H bằng nhau và góc HIE = góc FA (cùng chắn cung A của Q) => HI / HF = HE / HA => HI*HA = HE*HF ♦
2 ∆ HEB và HCF đồng dạng do có góc tại đỉnh H bằng nhau và góc HEB = góc HCF (cùng chắn cung BF của O) => HE / HC = HB / HF => HB*HC = HE*HF ♥
(Nếu bạn đã học phương tích của điểm đối với đường tròn thì có ngay ♦ và ♥ không cần cm vì ♦ chính là pt của H đối với Q còn ♥ là pt của H đối với O)
♦, ♥ => HI*HA = HB*HC => HI*(AI - HI) = (x - HI)(x + HI) => HI*AI = x²
=> HI = x² / AI = hằng số (A, I cố định nên AI không đổi)
=> H cố định.
Dễ thấy OIHK nội tiếp đường tròn (P) => đường tròn ngoại tiếp ∆ IOK chính là (P). Tâm đường tròn (P) dĩ nhiên nằm trên trung trực k của HI mà trung trực này cố định do H, I cố định. Vậy tâm đường tròn ngoại tiếp tam giác OIK luôn thuộc k cố định

A E X B C K O I D F
Dễ chứng minh \(\Delta AEB\Delta ACE\left(g.g\right)\)
b ) Cm tứ giác \(OEAI\) và \(AEOF\) nt
Dễ thấy : \(\widehat{AEO}=\widehat{AIO}=90^o\)
\(\Rightarrow\) tứ giác OEAI nt đường tròn đường kính OA (1)
Lại có : \(\widehat{AEO}=\widehat{AFO}=90^o\)
\(\Rightarrow\) tứ giác AEOF nt đường tròn đường kính OA (2)
Từ (1) và (2) \(\Rightarrow\) đpcm
+ ) CM : ED//AC
Có : \(\widehat{xED}=\widehat{EFD}\left(=\frac{1}{2}sđcungED\right)\)
Mà 5 diểm A , E, O , I , F cùng thuộc 1 đường tròn
\(\Rightarrow\widehat{EFD}=\widehat{EAI}\left(=\frac{1}{2}sđEI\right)\)
\(\Rightarrow\widehat{xED}=\widehat{EAI}\)
\(\Rightarrow\) DE//AC
Chúc bạn học tốt !!!

a: ΔOBC cân tại O
mà OI là đường trung tuyến
nên OI⊥BC tại I
Ta có: \(\hat{OIA}=\hat{OMA}=\hat{ONA}=90^0\)
=>O,I,M,A,N cùng thuộc đường tròn đường kính OA
=>O,I,M,N cùng thuộc một đường tròn
b: Gọi K là giao điểm của MN và OA
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
=>A nằm trên đường trung trực của MN(1)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(2)
Từ (1),(2) suy ra OA là đường trung trực của MN
=>OA⊥MN tại K và K là trung điểm của MN
Xét ΔOKH vuông tại K và ΔOIA vuông tại I có
\(\hat{KOH}\) chung
Do đó: ΔOKH~ΔOIA
=>\(\frac{OK}{OI}=\frac{OH}{OA}\)
=>\(OI\cdot OH=OK\cdot OA\left(3\right)\)
Xét ΔOMA vuông tại M có MK là đường cao
nên \(OK\cdot OA=OM^2=R^2\) (4)
Từ (3),(4) suy ra \(OI\cdot OH=R^2\)

b: Xet ΔAEH và ΔACE có
góc AEH=góc ACE
góc EAH chung
=>ΔAEH đòng dạng vói ΔACE
=>AE^2=AH*AC
Xét ΔAEB và ΔACE có
góc AEB=góc ACE
góc EAB chung
=>ΔAEB đồng dạng với ΔACE
=>AE^2=AB*AC
gọi Ex là tia đối của tiếp tuyến EA
Ta có : \(\widehat{xED}=\frac{1}{2}sđ\widebat{ED}\); \(\widehat{EFD}=\frac{1}{2}sđ\widebat{ED}\)\(\Rightarrow\widehat{xED}=\widehat{EFD}\)( 1 )
Dễ thấy tứ giác AFOE nội tiếp
I là trung điểm của BC nên OI \(\perp\)BC \(\Rightarrow\)tứ giác AIOE nội tiếp
\(\Rightarrow\)5 điểm A,F,I,O,E cùng thuộc 1 đường tròn
\(\Rightarrow\)tứ giác AFIE nội tiếp \(\Rightarrow\)\(\widehat{EAI}=\widehat{EFI}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\widehat{xED}=\widehat{EAI}\Rightarrow ED//AC\)
Gọi N là giao điểm của AO và EF
Dễ chứng minh AN \(\perp\)EF
\(\DeltaẠNH~\Delta AIO\left(g.g\right)\Rightarrow\frac{AN}{AH}=\frac{AI}{AO}\Rightarrow AI.AH=AN.AO\)( 3 )
Ta có : \(AE^2=AN.AO\)( 4 )
Xét \(\Delta AEB\)và \(\Delta ACE\)có :
\(\widehat{EAC}\)( chung ) ; \(\widehat{AEB}=\widehat{ACE}=\frac{1}{2}sđ\widebat{EB}\)
\(\Rightarrow\Delta AEB~\Delta ACE\left(g.g\right)\)
\(\Rightarrow\frac{AE}{AB}=\frac{AC}{AE}\Rightarrow AE^2=AB.AC\)( 5 )
Từ ( 3 ) , ( 4 ) và ( 5 ) suy ra : AH.AI = AB.AC
đề bạn cho thiếu nhé. đoạn cuối AH. AI = AB . AC với H là giao điểm của AC và EF