K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2016

\(Bdt\Leftrightarrow\left(a^2+b^2+c^2\right)\left(\text{∑}\frac{a}{a^2+2b^2+c^2}\right)\ge\frac{3\left(a+b+c\right)}{4}\left(1\right)\)

Ta dùng Bđt Bunhiacopski

\(VT\left(1\right)\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{\text{∑}a^3+2\left(ab^2+bc^2+ca^2\right)+\left(a^2b+b^2c+c^2a\right)}\)

Vậy ta cần chứng minh \(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{\text{∑}a^3+2\left(ab^2+bc^2+ca^2\right)+\left(a^2b+b^2c+c^2a\right)}\ge\frac{3}{4}\left(2\right)\)

Thật vậy \(\left(2\right)\Leftrightarrow\text{∑}a^3+\left(a^2b+b^2c+c^2a\right)\ge2\left(ab^2+bc^2+ca^2\right)\)

Bđt này luôn đúng theo Cauchy vì \(a^3+c^2a\ge2a^2c\)

-->Đpcm

 

 

15 tháng 9 2016

đề thế này \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\) ak