\(\sqrt{\frac{a^3}{5a^2+\left(b+c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2020

\(\Leftrightarrow\Sigma\sqrt{\frac{3a^3}{\left[5a^2+\left(b+c\right)^2\right]\left(a+b+c\right)}}\le1\)

Theo Am-GM: \(VT=\Sigma\sqrt{\frac{3a^2}{5a^2+\left(b+c\right)^2}.\frac{a}{a+b+c}}\le\Sigma\frac{3a^2}{2\left(5a^2+\left(b+c\right)^2\right)}+\frac{1}{2}\)

Như vậy nó là đủ để chứng minh rằng: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\)

Giả sử \(c=min\left\{a,b,c\right\}\) nó tương đương:

$$2\, \left( a-b \right) ^{2} \left( 3\,c+a+b \right)  \left( -c+a+b  \right)  \left( {a}^{2}+2\,ab+{b}^{2}+5\,{c}^{2} \right) +2\,c  \left( a-c \right)  \left( b-c \right)  \left( 3\,{a}^{3}+9\,{a}^{2}b +17\,c{a}^{2}+9\,a{b}^{2}-20\,abc+3\,{c}^{2}a+3\,{b}^{3}+17\,c{b}^{2}+ 3\,{c}^{2}b+{c}^{3} \right)  \geqq 0$$

(Gõ Latex, không hiện thì vô thống kê hỏi đáp xem)

Đây là điều hiển nhiên/

PS: Bài này quan trọng là ý tưởng phá căn thôi chứ không có gì khó. Lúc đầu UCT bất đẳng thức cuối cho đẹp nhưng phải xét các TH mệt lắm, chưa rành nên không làm cách đó:D

7 tháng 5 2020

Chứng minh: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\), cách 2:

Đổi biến sang pqr: (Vô thống kê hỏi đáp xem nếu olm không hiện Latex)

Nếu \(p^2\le4q\) ta cần:

$$2/9\,p \left( 19\,{p}^{2}-36\,q \right)  \left( {p}^{3}-4\,qp+9\,r  \right) -4/9\, \left( {p}^{2}-3\,q \right)  \left( {p}^{2}-4\,q  \right)  \left( 5\,{p}^{2}-3\,q \right) \geqq 0$$

(Hiển nhiên)

Nếu \(p^2\ge4q\) thì cần chứng minh:

$$2\,p \left( 19\,{p}^{2}-36\,q \right) r+2\, \left( {p}^{2}-4\,q  \right)  \left( {p}^{4}-2\,{q}^{2} \right)  \geqq 0$$

(Hiển nhiên)

Từ 2 TH trên ta thu được điều phải chứng minh.

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

12 tháng 3 2017

Ta có:

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)

Suy ra  \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:

\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)

Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy:   \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)

\(\Rightarrow\)  \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\)  (do  \(a,b,c>0\)  )

nên   \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(\Rightarrow\) \(đpcm\)

23 tháng 8 2020

Áp dụng bất đẳng thức Bunyakovsky ta được:          \(\left(ab+bc+ca+1\right)\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)\ge\left(a+b+c+1\right)^2\)\(\left(ab+bc+ca+1\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+1\right)\ge\left(b+c+a+1\right)^2\)

Cộng theo vế hai bất đẳng thức này ta được \(\left(ab+bc+ca+1\right)\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge2\left(a+b+c+1\right)^2\)hay \(\frac{ab+bc+ca+1}{\left(a+b+c+1\right)^2}\ge\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đến đây, ta quy bất đẳng thức cần chứng minh về dạng:\(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Áp dụng bất đẳng thức Cauchy ta được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\)\(\ge2\sqrt{\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.\frac{1}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}}\)\(=\sqrt{\sqrt[3]{\frac{a^2b^2c^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}}=\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)(*)

Cũng theo bất đẳng thức Cauchy ta được \(\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}+\frac{1}{4}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge2\sqrt{\frac{1}{4}}=1\)(**)

Từ (*) và (**) suy ra được \(\frac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{3}{8}\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge1\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra a = b = c = 1

5 tháng 6 2017

bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Thay vao đc \(a+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

lm Tương tụ r quy đòng nha bạn

5 tháng 6 2017

bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Ấy ,,,vi diệu ko,,,,rồi thay tiếp vào \(a+2=\sqrt{a}^2+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

bạn lm tương tự r quy đồng,,OK??

~ Hóa ra là tình yêu phút chốc, cứ tin rắng ngày mai người sẽ thấy ~

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

31 tháng 5 2019

  • LUYỆN TẬP
  • HỌC BÀI
  • HỎI ĐÁP
  • KIỂM TRA
  • VINSCHOOL

MUA THẺ HỌC

  •  
  •  
  • 1
  • pham anh khoi 

Giúp tôi giải toán và làm văn

 Tìm kiếm 

  • Mới nhất
  • Chưa trả lời
  • Câu hỏi hay
  • Câu hỏi tôi quan tâm
  • Câu hỏi của bạn bè
  • Gửi câu hỏi

Tất cảToánTiếng ViệtTiếng Anh

pham anh khoi

Trả lời

0

Đánh dấu

Vài giây trước

10+10 

mình đang fa cần người dỗ dành 

Tiếng Việt lớp 3

Tiêu Phong

Trả lời

0

Đánh dấu

3 phút trước

Cho phương trình x2-6x+m=0 . Tìm m để phương trình có 2 nghiệm thỏa mãn x1-x2=4 

   Giải giúp mình !!

Toán lớp 9 Công thức nghiệm Vi-et

anh chàng đẹp trai

Trả lời

0

Đánh dấu

4 phút trước

tính nhanh:

113 x214 x315 x416 x517 x618 x719 x8110 

ai xong cho 3 tích , giải đầy đủ các bước ra nhé!

Đọc tiếp...

Toán lớp 5

Lâm Bảo Trang

Trả lời

2

Đánh dấu

17 tháng 12 2016 lúc 19:14

GIÚP MK NHA CÁC BẠN

KHÔNG LÀM PHÉP TÍNH HÃY KIỂM TRA XEM KẾT QUẢ CỦA PHÉP TÍNH SAU ĐÚNG HAY SAI?

1  *  3  *  5  *  7  *  9  *...  *  17  =  654729045

Được cập nhật 4 phút trước

Toán lớp 4

Hoàng Long Vài giây trước
Thống kê hỏi đáp
 Báo cáo sai phạm

Ta có quy tắc sau rằng một số tận cùng là 5 nhân với số lẻ sẽ ra kết quả là một số có tận cùng là 5. Ta có kết quả của dãy số trên có số đầu là 3. Vậy phép tính trên là sai.

 Đúng 0  Sai 1

Đỗ Thanh Hải 17 tháng 12 2016 lúc 19:16
Thống kê hỏi đáp
 Báo cáo sai phạm

Sai vì vừa tính

 Đúng 0  Sai 1

pham anh khoi

sai

Câu trả lời của bạn cần phải đợi Quản lý của Online Math duyệt trước khi hiển thị!×

hoang thi tham

Trả lời

0

Đánh dấu

4 phút trước

một hình chữnhật có chiều dài 70cm, nếu giảm chiều dài đi 3dm và giữ nguyên chiều rộng và chiều cao thì thể tích hình hộp chữ nhật giảm đi 27000cm khói . tính thể tích của hình hộp chữ nhật ban đầu? 

Toán lớp 5

nguyễn quỳnh anh

Trả lời

0

Đánh dấu

5 phút trước

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài với nhau tại điểm D.
Vẽ cát tuyến CB của đường tròn (O’) tiếp xúc với đường tròn (O) tại
A (C, B thuộc đường tròn (O’), B nằm giữa A và C). Chứng minh
điểm A cách đều hai đường thẳng BD và CD.

Toán lớp 9

nguyễn kim kiên 21022004

Trả lời

0

Đánh dấu

8 phút trước

cho mạch điện gồm điện trở r1=3 mắc nối tiếp với 1 cụm 2 điện trở(r2=12 song song với r1) với r3 là biến trở hiệu điện thế giữa hai đầu đoạn mạch không đổi .Tìm r1 để công suất tiêu thụ trên r3 cực đại

GIÚP MK ĐI SẮP THI RỒI...

Toán lớp 9

lê thị huyền

Trả lời

12

Đánh dấu

10 tháng 12 2016 lúc 21:24

cho một số thập phân có 3 chữ số trong đó phần thập phân có một chữ số .nếu viết thêm chữ số 5 vào bên trái số đó thì được một số gấp 41 lần số đã cho.tìm số đó?

Được cập nhật 13 phút trước

Toán lớp 5

Vũ Tiến Đạt {☝Th̠ần̠✪Phá✪Hủy☝} 4 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

trả lời 

=12,5

chúc bn 

học tốt

 Đúng 3  Sai 0

Vũ Tiến Đạt {☝Th̠ần̠✪Phá✪Hủy☝} 6 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

trả lời 

=12,5

chúc bn 

học tốt

 Đúng 3  Sai 0

︵✿ ๖ۣۜNɠυүễη ๖ۣۜHυү ๖ۣۜTú‿✿ [ RBL ] ❧VAMY☙ 5 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

trả lời 

=12,5

chúc bn 

học tốt

 Đúng 3  Sai 0

✎﹏🅷ạ🅽🅷︵❣🅿🅷ú🅲︵❣Đé🅾︵❣🅲ó︵❣Đâ🆄︵❣✔

Trả lời

1

Đánh dấu

14 phút trước

Khi cha mẹ đi làm về, phải làm cho cha mẹ vui vẻ.

1. Lấy dép đi trong nhà, rót nước cho cha mẹ (Đông phải ấm, hạ phải mát; Cha mẹ thích, dốc lòng làm).

2. Lấy sổ liên lạc cho cha mẹ xem, chia sẻ những chuyện đã diễn ra ở trường (Nghe khen sợ, nghe lỗi vui; Chỉ đức học, chỉ tài nghệ; Không bằng người, phải tự gắng).

3. Không được làm phiền khi cha mẹ nói chuyện điện thoại, chuyện riêng tư hoặc xử lý công việc (Người không rảnh, chỡ não phiền; Người bất an, không quấy nhiễu).

Đọc tiếp...

Ngữ Văn lớp 6

Magicpencil 9 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

KO

ĐĂNG

CÂU

HỎI

LINH

TINH

TRÊN

DIỄN

ĐÀN

Đọc tiếp...

 Đúng 1  Sai 0

Magicpencil

Trả lời

12

Đánh dấu

16 phút trước

Đổi k nhé vì hôm nay hên xui lắm các anh chj ạ 

3 + 10 =

7 - 3 =

5 - 4 = 

mọi người ủng hộ nhé 

Đọc tiếp...

Toán lớp 1

Magicpencil 15 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

3 + 10 =13

7 - 3 =4

5 - 4 =1

Hok tốt

k mik k lại choa

Đọc tiếp...

 Đúng 5  Sai 0

︵✿ ๖ۣۜNɠυүễη ๖ۣۜHυү ๖ۣۜTú‿✿ [ RBL ] ❧VAMY☙ 2 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

=13

=4

=1

học tốt

 Đúng 3  Sai 3

♡ A.R.M.Y ²ƙ⁷♡김석진✧ 14 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

3 + 10 = 13

7 - 3 = 4

5 - 4 = 1

~Chúc chj hok tốt~

 Đúng 3  Sai 0

✎﹏🅷ạ🅽🅷︵❣🅿🅷ú🅲︵❣Đé🅾︵❣🅲ó︵❣Đâ🆄︵❣✔

Trả lời

3

Đánh dấu

19 phút trước

1. giúp cha mẹ lau dọn nhà cửa cho sạch sẽ. (Gian phòng sạch, vách tường sạch; Bàn học sạch, bút nghiên ngay).

2. Lựa chọn sách tham khảo có lợi cho trí tuệ, nâng cao phâm chất đạo đức; không xem những cuốn sách và tiết mục trên tivi như nội dung bạo lực, tình ái...làm vấy bẩn tâm trí của mình, không xem các thứ xấu trên máy tính, điện thoại...vì làm ảnh hưởng đức tính tốt của chúng ta. (Không sách thánh, bỏ không xem; Che thông minh, hư tâm trí).

Đọc tiếp...

Ngữ Văn lớp 7

ღTiểu Thư Cá Tínhღ 15 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

KO ĐĂNG CÂU LINH TINH LÊN DIỄN ĐÀN

 Đúng 2  Sai 2

✿кιℓℓ•υッ 17 phút trước
Thống kê hỏi đáp
 Báo cáo sai phạm

Hay....

#Hoctot

~ Kill ~

 Đúng 0  Sai 0

1 tháng 6 2019

Ta có \(a\sqrt{32\left(b^2+c^2\right)}=2.2a\sqrt{2\left(b^2+c^2\right)\le}4a^2+2\left(b^2+c^2\right)\)

\(\left(b+c\right)^2\le2\left(b^2+c^2\right)\)

=> \(12\le4\left(a^2+b^2+c^2\right)\)=> \(a^2+b^2+c^2\ge3\)

Ngoài ra \(a\sqrt{\left(16+16\right)\left(b^2+b^2\right)}\ge a\left(4a+4b\right)\)

\(\left(b+c\right)^2\ge4bc\)

=> \(ab+bc+ac\le3\)

\(VT=\frac{a^4}{ab+3a\sqrt{bc}}+\frac{b^4}{bc+3b\sqrt{ca}}+\frac{c^4}{ac+3c\sqrt{ba}}\)

  \(\ge\frac{a^4}{ab+\frac{3}{2}\left(a^2+bc\right)}+\frac{b^4}{bc+\frac{3}{2}\left(b^2+ac\right)}+\frac{c^4}{ac+\frac{3}{2}\left(c^2+ab\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}\left(ab+bc+ac\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{15}{2}}\)

Xét \(VT\ge\frac{3}{4}\)

<=> \(\left(a^2+b^2+c^2\right)^2\ge\frac{9}{8}\left(a^2+b^2+c^2\right)+\frac{45}{8}\)

<=> \(\left(a^2+b^2+c^2-3\right)+\left(a^2+b^2+c^2+\frac{15}{8}\right)\ge0\)(luôn đúng với \(a^2+b^2+c^2\ge3\)

=> ĐPCM

Dấu bằng xảy ra khi a=b=c=1

2 tháng 8 2020

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c