
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) bạn dùng dấu U
điều kiện \(\begin{cases}m\ne0,m>-\frac{1}{4}\\m< 1\end{cases}\)
muons dễ nhìn thì vẽ trục số: 0 -1/4 1 x
=> điều kiện x \(\in\left(-\frac{1}{4};1\right)\backslash\left\{0\right\}\)

\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)\)
Để hàm số có cực trị tại x = 1 thì x =1 phải là nghiệm của y'=0.
=> \(3.1^2-2m.1+\left(m-\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow m=\dfrac{7}{3}\)
Khi đó ta có:
\(y=x^3-\dfrac{7}{3}x^2+\dfrac{5}{3}x+5\)
\(y'=3x^2-2mx+\left(m-\dfrac{2}{3}\right)=\dfrac{1}{3}\left(9x^2-14x+5\right)\)
\(y'\) có 2 nghiệm là \(1\) và \(\dfrac{5}{9}\).
\(y'\) đổi dấu từ âm sang dương khi đi qua x = 1 nên tại x = 1 thì hàm số đạt cực tiểu.
Giá trị cực tiểu tại x = 1 là:
\(y\left(1\right)=1^3-\dfrac{7}{3}.1^2+\dfrac{5}{3}.1+5=\dfrac{16}{3}\)

\(\int\limits^2_{-1}f\left(x\right)dx=\int\limits^1_{-1}f\left(x\right)dx+\int\limits^2_1f\left(x\right)dx=\int\limits^1_{-1}\left(x^2+b\right)dx+\int\limits^2_1\left(ax+1\right)dx\)
\(=\left(\frac{x^3}{3}+bx\right)|^1_{-1}+\left(\frac{ax^2}{2}+x\right)|^2_1=\frac{5}{3}+2b+\frac{3a}{2}\)

Đừng quan tâm cái \(k2\pi\) đi, lấy nghiệm là số cố định thôi. Ví dụ \(\cos x=1\) thì bạn tìm được dấu bằng xảy ra khi \(x=0\)
nghĩa là vứt luôn k2\(\pi\) ạ? chỉ ghi nghiệm là số đằng trước thôi ạ?

Lời giải:
\(\int ^{1}_{0}x^2dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^3}{3}=\frac{1}{3}; \int ^{1}_{0}x^3dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^4}{4}=\frac{1}{4}\)
\(\frac{1}{3}>\frac{1}{4}\Rightarrow A\) đúng.
Câu B. Xét về mặt điều kiện thì với \(x>0\Rightarrow \frac{1}{x+1}\) luôn có nghĩa, lúc này hàm số mới có tích phân được.
Xét theo định nghĩa nguyên hàm thì luôn đúng vì \(F(x)=\int f(x)dx\Leftrightarrow f(x)=F'(x)\)
Câu D.
\(\int ^b_af(x)dx+\int ^c_bf(x)dx=F(b)-F(a)+F(c)-F(b)\)
\(=F(c)-F(a)=\int ^c_af(x)dx\)
Do đó D đúng.
Do đó câu C sai.
Nếu \(\int ^a_{-a}f(x)dx=2\int ^{a}_0f(x)dx\)
\(\Leftrightarrow F(a)-F(-a)=2F(a)-2F(0)\)
\(\Leftrightarrow F(a)+F(-a)=2F(0)\)
Giả sử cho \(F(x)=x^2\), \(a\neq 0\)thì điều trên hiển nhiên vô lý
Do đó C sai.

Bài 1)
Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).
Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)
\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)
Vậy số phức cần tìm là \(\frac{5}{6}+4i\)
b)
\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)
\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)

a) Ta có \(\log_32<\log_33=1=\log_22<\log_23\)
b) \(\log_23<\log_24=2=\log_39<\log_311\)
c) Đưa về cùng 1 lôgarit cơ số 10, ta có
\(\frac{1}{2}+lg3=\frac{1}{2}lg10+lg3=lg3\sqrt{10}\)
\(lg19-lg2=lg\frac{19}{2}\)
So sánh 2 số \(3\sqrt{10}\) và \(\frac{19}{2}\) ta có :
\(\left(3\sqrt{10}\right)^2=9.10=90=\frac{360}{4}<\frac{361}{4}=\left(\frac{19}{2}\right)^2\)
Vì vậy : \(3\sqrt{10}<\frac{19}{2}\)
Từ đó suy ra \(\frac{1}{2}+lg3\)<\(lg19-lg2\)
d) Ta có : \(\frac{lg5+lg\sqrt{7}}{2}=lg\left(5\sqrt{7}\right)^{\frac{1}{2}}=lg\sqrt{5\sqrt{7}}\)
Ta so sánh 2 số : \(\sqrt{5\sqrt{7}}\) và \(\frac{5+\sqrt{7}}{2}\)
Ta có :
\(\sqrt{5\sqrt{7}}^2=5\sqrt{7}\)
\(\left(\frac{5+\sqrt{7}}{2}\right)^2=\frac{32+10\sqrt{7}}{4}=8+\frac{5}{2}\sqrt{7}\)
\(8+\frac{5}{2}\sqrt{7}-5\sqrt{7}=8-\frac{5}{2}\sqrt{7}=\frac{16-5\sqrt{7}}{2}=\frac{\sqrt{256}-\sqrt{175}}{2}>0\)
Suy ra : \(8+\frac{5}{2}\sqrt{7}>5\sqrt{7}\)
Do đó : \(\frac{5+\sqrt{7}}{2}>\sqrt{5\sqrt{7}}\)
và \(lg\frac{5+\sqrt{7}}{2}>\frac{lg5+lg\sqrt{7}}{2}\)

Lời giải:
Áp dụng BĐT Cô-si cho các số không âm:
\(1001x^2+1001z^2\geq 2\sqrt{1001x^2.1001z^2}=2|1001xz|\geq 2002xz\)
\(18x^2+\frac{25}{2}y^4\geq 2\sqrt{18x^2.\frac{25}{2}y^4}=2|15xy^2|\geq 30xy^2\)
\(\frac{3}{2}y^4+6z^2\geq 2\sqrt{\frac{3}{2}y^4.6z^2}=2|3y^2z|\geq 6y^2z\)
\(4y^4\geq 0\)
Cộng các BĐT trên theo vế, ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=0$
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm:
\(1001x^2+1001z^2\geq 2\sqrt{1001x^2.1001z^2}=2|1001xz|\geq 2002xz\)
\(18x^2+\frac{25}{2}y^4\geq 2\sqrt{18x^2.\frac{25}{2}y^4}=2|15xy^2|\geq 30xy^2\)
\(\frac{3}{2}y^4+6z^2\geq 2\sqrt{\frac{3}{2}y^4.6z^2}=2|3y^2z|\geq 6y^2z\)
\(4y^4\geq 0\)
Cộng các BĐT trên theo vế, ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=0$
Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!