K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

can tui giup k

15 tháng 6 2017

(m2-3m+2)x+3=2m      =>(m-2)(m-1)x=3(m-1)    =>(m-1)(xm-2x-3)=0   

nếu m-1=0 thì m=1 xm-2x-3=-x-3=0 thì có 1 no duy nhất x=3

nếu xm-2x-3=0 thì x(m-2)=3   

m-2-331-1
x-113-3
m-1531

vậy m=-1,5,3,1 thì pt có 1 no duy nhất

                                                 

b: Để hệ có nghiệm duy nhất thì \(\frac{1}{m}<>\frac{1}{-1}\)

=>m<>-1

c: Để hệ có nghiệm duy nhất thì m<>-1

\(\begin{cases}x+y=2\\ mx-y=1\end{cases}\Rightarrow\begin{cases}x+y+mx-y=2+1=3\\ x+y=2\end{cases}\)

=>\(\begin{cases}x\left(m+1\right)=3\\ x+y=2\end{cases}\Rightarrow\begin{cases}x=\frac{3}{m+1}\\ y=2-x=2-\frac{3}{m+1}=\frac{2m+2-3}{m+1}=\frac{2m-1}{m+1}\end{cases}\)

x-3y=5

=>\(\frac{3}{m+1}-\frac{3\left(2m-1\right)}{m+1}=5\)

=>3-3(2m-1)=5(m+1)

=>3-6m+3=5m+5

=>-6m+6=5m+5

=>-11m=-1

=>\(m=\frac{1}{11}\) (nhận)

d: xy<0

=>\(\frac{3}{m+1}\cdot\frac{2m-1}{m+1}<0\)

=>3(2m-1)<0

=>2m-1<0

=>\(m<\frac12\)

Kết hợp với m<>-1, ta được: \(\begin{cases}m<\frac12\\ m<>-1\end{cases}\)

e: x+2y>4

=>\(\frac{3}{m+1}+\frac{2\left(2m-1\right)}{m+1}>4\)

=>3+2(2m-1)>4(m+1)

=>3+4m-2>4m+4

=>1>4(sai)

=>m∈∅

f: Để x,y nguyên thì 3⋮m+1 và 2m-1⋮m+1

=>3⋮m+1 và 2m+2-3⋮m+1

=>3⋮m+1 và -3⋮m+1

=>3⋮m+1

=>m+1∈{1;-1;3;-3}

=>m∈{0;-2;2;-4}

30 tháng 6 2020

a

Ta có:

\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m

b

Phương trình có 2 nghiệm trái dấu thì \(2m-3< 0\Leftrightarrow m< \frac{3}{2}\)

Vậy .....................