K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì 13, 15,61 chia cho a đều dư 1 => 13;15;61 \(⋮a-1\) 

=> a-1 thuộc ƯC(13;15;61)

Mà a lớn nhất => a-1 thuộc ƯCLN(13,15,61) 

Mà 13;15;61 là các số nguyên tố cùng nhau => ƯCLN(13;15;61) = 1

=> a-1=1

=>a=2

Vậy a=2.

b) Ta có: 149 : a dư 29 => (149-29) thì chia hết cho a ( a > 29)

                235 : a dư 35 => ( 235 -  35) chia hết cho a ( a> 35)

=> a thuộc ƯCLN(120,200) = 40

=> a = 40

Vậy a = 40

c) câu c tương tự câu b

Bài 4: 44 chia x dư 2

=>44-2⋮x và x>2

=>42⋮x và x>2(1)

86 chia x dư 2

=>86-2⋮x và x>2

=>84⋮x và x>2(2)

65 chia x dư 2

=>65-2⋮x và x>2

=>63⋮x và x>2(3)

Ta có: \(42=2\cdot3\cdot7;63=3^2\cdot7;84=2^2\cdot3\cdot7\)

Do đó: ƯCLN(42;63;84)\(=3\cdot7=21\)

Từ (1),(2),(3) suy ra x∈ƯC(42;84;63) và x>2

mà x lớn nhất

nên x=ƯCLN(42;84;63)

=>x=21

Bài 5: 268 chia x dư 18

=>268-18⋮x và x>18

=>250⋮x và x>18(1)

390 chia x dư 40

=>390-40⋮x và x>40

=>350⋮x và x>40(2)

\(250=5^3\cdot2;350=5^2\cdot2\cdot7\)

Do đó: ƯCLN(250;350)\(=5^2\cdot2=50\)

Từ (1),(2) suy ra x∈ƯC(250;350) và x>40

=>x∈Ư(50) và x>40

=>x=50

Bài 6:

27 chia x dư 3

=>27-3⋮x và x>3

=>24⋮x và x>3(1)

38 chia x dư 2

=>38-2⋮x và x>2

=>36⋮x và x>2(2)

49 chia x dư 1

=>49-1⋮x và x>1

=>48⋮x và x>1(3)

\(24=2^3\cdot3;36=2^2\cdot3^2;48=2^4\cdot3\)

Do đó: ƯCLN(24;36;48)\(=2^2\cdot3=12\)

Từ (1),(2),(3) suy ra x∈ƯC(24;36;48) và x>3

=>x∈Ư(12) và x>3

mà x lớn nhất

nên x=12

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
12 tháng 11 2019

50 nha

3 tháng 12 2023

Theo đề bài ta có:

268 - 18 ⋮ X = 250 ⋮ X

390 - 40 ⋮ X = 350 ⋮ X

Hay X là ƯC(250,350)

⇒ X ϵ ƯCLN(250,350)

Ta có: 250 = 2.53

350 = 2. 52. 7

⇒ ƯCLN(250,350) = 2. 52 = 50

⇒ 50 ⋮ X 

⇒ X ϵ {1; 2; 5; 10; 25; 50}

 

3 tháng 12 2023

268:x dư 18 => 250 chia hết cho x

390:x dư 40 => 350 chia hết cho x

\(250=5^3.2;350=5^2.2.7\\ ƯCLN\left(250;350\right)=5^2.2=50\\ x\inƯ\left(50\right)=\left\{1;2;5;10;25;50\right\}\)

Vì 390:x dư 40 => x>40

Vậy: x=50