\(\frac{2n-1}{3n+2}\) rút gọn được 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6

Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2

<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)

Lập bảng

5n-3= -6 -3 -2 -1 1 2 3 6
n= -0.6 0 0.2 0.4 0.8 1 1.2 1.8

21 tháng 5

Dưới đây là lời giải chi tiết cho hai bài toán bạn hỏi:


Bài 1: Tìm số nguyên \(n\) để biểu thức

\(\frac{2 n - 1}{3 n + 2}\)

rút gọn được.


Phân tích:

Một phân số có thể rút gọn được khi tử số và mẫu số có ước chung lớn hơn 1.

Vậy ta cần tìm số nguyên \(n\) sao cho:

\(gcd ⁡ \left(\right. 2 n - 1 , 3 n + 2 \left.\right) > 1\)

Giải:

Gọi \(d = gcd ⁡ \left(\right. 2 n - 1 , 3 n + 2 \left.\right)\), \(d > 1\).

\(d \mid \left(\right. 2 n - 1 \left.\right)\)\(d \mid \left(\right. 3 n + 2 \left.\right)\), nên \(d\) cũng chia được các tổ hợp tuyến tính của chúng:

\(d \mid \left(\right. 3 \times \left(\right. 2 n - 1 \left.\right) \left.\right) = 6 n - 3\) \(d \mid \left(\right. 2 \times \left(\right. 3 n + 2 \left.\right) \left.\right) = 6 n + 4\)

Do đó,

\(d \mid \left(\right. \left(\right. 6 n + 4 \left.\right) - \left(\right. 6 n - 3 \left.\right) \left.\right) = 7\)

Vậy \(d \mid 7\).

\(d > 1\), nên \(d = 7\).


Điều kiện:

\(7 \mid \left(\right. 2 n - 1 \left.\right) \text{v} \overset{ˋ}{\text{a}} 7 \mid \left(\right. 3 n + 2 \left.\right)\)

Tức là:

\(2 n - 1 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 2 n \equiv 1 \left(\right. m o d 7 \left.\right)\) \(3 n + 2 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 3 n \equiv - 2 \equiv 5 \left(\right. m o d 7 \left.\right)\)

Giải từng phương trình modulo 7:

  • \(2 n \equiv 1 \left(\right. m o d 7 \left.\right)\)

Nhân hai vế với nghịch đảo của 2 modulo 7. Vì \(2 \times 4 = 8 \equiv 1 \left(\right. m o d 7 \left.\right)\), nên nghịch đảo của 2 là 4.

\(n \equiv 4 \times 1 = 4 \left(\right. m o d 7 \left.\right)\)
  • \(3 n \equiv 5 \left(\right. m o d 7 \left.\right)\)

Nghịch đảo của 3 modulo 7 là 5 vì \(3 \times 5 = 15 \equiv 1 \left(\right. m o d 7 \left.\right)\)

\(n \equiv 5 \times 5 = 25 \equiv 4 \left(\right. m o d 7 \left.\right)\)

Kết luận:

Cả hai điều kiện đều yêu cầu:

\(n \equiv 4 \left(\right. m o d 7 \left.\right)\)

Vậy các số nguyên \(n\) thỏa mãn là:

\(n = 7 k + 4 , k \in \mathbb{Z}\)

Bài 2: Cho

\(A = \frac{10 n}{5 n - 3} , n \in \mathbb{Z}\)

a) Tìm \(n\) để \(A\) có giá trị nguyên


Điều kiện:

  • Mẫu số khác 0:
\(5 n - 3 \neq 0 \Rightarrow n \neq \frac{3}{5}\)
  • \(A\) là số nguyên \(\Rightarrow 5 n - 3 \mid 10 n\)

Phân tích:

Giả sử \(d = 5 n - 3\), ta cần \(d \mid 10 n\).

Ta có:

\(d = 5 n - 3 \Rightarrow 5 n = d + 3\)

Thay vào biểu thức \(10 n = 2 \times 5 n = 2 \left(\right. d + 3 \left.\right) = 2 d + 6\).


\(d \mid 10 n\), tức là \(d \mid 2 d + 6\).

\(d \mid 2 d\) nên \(d \mid 6\).


Tóm lại:

\(5 n - 3 = d \mid 6\)

Vậy \(5 n - 3\) là ước của 6.

Các ước của 6 là: \(\pm 1 , \pm 2 , \pm 3 , \pm 6\).


Tìm \(n\) ứng với từng giá trị:

  • \(5 n - 3 = 1 \Rightarrow 5 n = 4 \Rightarrow n = \frac{4}{5}\) (không nguyên)
  • \(5 n - 3 = - 1 \Rightarrow 5 n = 2 \Rightarrow n = \frac{2}{5}\) (không nguyên)
  • \(5 n - 3 = 2 \Rightarrow 5 n = 5 \Rightarrow n = 1\) (nguyên)
  • \(5 n - 3 = - 2 \Rightarrow 5 n = 1 \Rightarrow n = \frac{1}{5}\) (không nguyên)
  • \(5 n - 3 = 3 \Rightarrow 5 n = 6 \Rightarrow n = \frac{6}{5}\) (không nguyên)
  • \(5 n - 3 = - 3 \Rightarrow 5 n = 0 \Rightarrow n = 0\) (nguyên)
  • \(5 n - 3 = 6 \Rightarrow 5 n = 9 \Rightarrow n = \frac{9}{5}\) (không nguyên)
  • \(5 n - 3 = - 6 \Rightarrow 5 n = - 3 \Rightarrow n = - \frac{3}{5}\) (không nguyên)

Vậy các giá trị nguyên \(n\) thỏa mãn là:

\(n = 0 , n = 1\)

Kiểm tra giá trị \(A\):

  • Với \(n = 0\):
\(A = \frac{10 \times 0}{5 \times 0 - 3} = \frac{0}{- 3} = 0\)
  • Với \(n = 1\):
\(A = \frac{10 \times 1}{5 \times 1 - 3} = \frac{10}{2} = 5\)

b) Tìm giá trị lớn nhất của \(A\)


Ta xét hàm số:

\(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)

với \(n \in \mathbb{Z}\), \(n \neq \frac{3}{5}\).


Phân tích:

  • Khi \(n \rightarrow + \infty\), \(A \left(\right. n \left.\right) \rightarrow \frac{10 n}{5 n} = 2\)
  • Khi \(n \rightarrow - \infty\), \(A \left(\right. n \left.\right) \rightarrow 2\)

Tính giá trị \(A \left(\right. n \left.\right)\) tại một số \(n\) nguyên:

\(n\)nnn

\(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)A(n)=10n5n−3A(n) = \frac{10n}{5n - 3}A(n)=5n−310n

Giá trị

0

0

0

1

\(\frac{10}{2} = 5\)102=5\frac{10}{2} = 5210=5

5

2

\(\frac{20}{7} \approx 2.86\)207≈2.86\frac{20}{7} \approx 2.86720≈2.86

2.86

3

\(\frac{30}{12} = 2.5\)3012=2.5\frac{30}{12} = 2.51230=2.5

2.5

4

\(\frac{40}{17} \approx 2.35\)4017≈2.35\frac{40}{17} \approx 2.351740≈2.35

2.35

5

\(\frac{50}{22} \approx 2.27\)5022≈2.27\frac{50}{22} \approx 2.272250≈2.27

2.27

-1

\(\frac{- 10}{- 8} = 1.25\)−10−8=1.25\frac{-10}{-8} = 1.25−8−10=1.25

1.25

-2

\(\frac{- 20}{- 13} \approx 1.54\)−20−13≈1.54\frac{-20}{-13} \approx 1.54−13−20≈1.54

1.54

-3

\(\frac{- 30}{- 18} = 1.67\)−30−18=1.67\frac{-30}{-18} = 1.67−18−30=1.67

1.67


Nhận xét:

  • Giá trị \(A \left(\right. n \left.\right)\) lớn nhất trong các giá trị nguyên đã thử là tại \(n = 1\) với \(A = 5\).
  • Các giá trị khác đều gần 2 hoặc nhỏ hơn 5.
  • Vì hàm số tiệm cận 2 khi \(n \rightarrow \pm \infty\), nên giá trị lớn nhất của \(A\) trên các số nguyên là 5 tại \(n = 1\).

Tóm tắt đáp án:

  • Bài 1: Các số nguyên \(n\) để phân số rút gọn được là \(n = 7 k + 4\), với \(k \in \mathbb{Z}\).
  • Bài 2:
    • a) \(A\) nguyên khi \(n = 0\) hoặc \(n = 1\).
    • b) Giá trị lớn nhất của \(A\)\(5\), đạt được tại \(n = 1\).

Nếu bạn cần giải thích thêm hoặc bài toán khác, cứ hỏi nhé!



7 tháng 8 2016

Bài 2:

a) \(A=\frac{10n}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)

Vậy để A nguyên thì \(5n-3\inƯ\left(6\right)\)

Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}

=>5n-3={1;-1;2;-2;3;-3;6;-6}

Ta có bảng sau:

5n-31-12-23-36-6
n\(\frac{4}{5}\)\(\frac{2}{5}\)1\(\frac{1}{5}\)\(\frac{6}{5}\)0\(\frac{9}{5}\)-\(\frac{3}{5}\)

Vậy \(x=\left\{\frac{4}{5};\frac{2}{5};1;\frac{1}{5};\frac{6}{5};0;\frac{9}{5};-\frac{3}{5}\right\}\) thì A nguyên

 

7 tháng 8 2016

Thanks bạn iu nah

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

26 tháng 1 2017

-b-b+a-c-a+b-c-c+a

= (-b+b-b )+(a-a+a)+(-c-c-c)

= -b + a + (-3c)

CHÚC BẠN NĂM MỚI ZUI ZẺ

HAPPY NEW YEAR ^_^

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~