Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
a) \(A=\frac{10n}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
Vậy để A nguyên thì \(5n-3\inƯ\left(6\right)\)
Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>5n-3={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | \(\frac{4}{5}\) | \(\frac{2}{5}\) | 1 | \(\frac{1}{5}\) | \(\frac{6}{5}\) | 0 | \(\frac{9}{5}\) | -\(\frac{3}{5}\) |
Vậy \(x=\left\{\frac{4}{5};\frac{2}{5};1;\frac{1}{5};\frac{6}{5};0;\frac{9}{5};-\frac{3}{5}\right\}\) thì A nguyên

-b-b+a-c-a+b-c-c+a
= (-b+b-b )+(a-a+a)+(-c-c-c)
= -b + a + (-3c)
CHÚC BẠN NĂM MỚI ZUI ZẺ
HAPPY NEW YEAR ^_^

Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Cho B=\(\frac{10n}{5n-3}\)với \(n\in Z\)
a) Tìm n để B có giá trị nguyên
b) Tìm giá trị lớn nhất của B


\(b)\) Ta có :
\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại )
Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN
\(\Rightarrow\)\(3n+2=1\)
\(\Rightarrow\)\(3n=-1\)
\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) )
\(\Rightarrow\)\(3n+2=2\)
\(\Rightarrow\)\(3n=0\)
\(\Rightarrow\)\(n=0\)
Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)
Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A\inℤ\) thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\frac{-1}{3}\) | \(-1\) | \(1\) | \(\frac{-7}{3}\) |
Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)
Vậy \(n=1\) hoặc \(n=-1\)
Chúc bạn học tốt ~
Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6
Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2
<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)
Lập bảng
Dưới đây là lời giải chi tiết cho hai bài toán bạn hỏi:
Bài 1: Tìm số nguyên \(n\) để biểu thức
\(\frac{2 n - 1}{3 n + 2}\)rút gọn được.
Phân tích:
Một phân số có thể rút gọn được khi tử số và mẫu số có ước chung lớn hơn 1.
Vậy ta cần tìm số nguyên \(n\) sao cho:
\(gcd \left(\right. 2 n - 1 , 3 n + 2 \left.\right) > 1\)Giải:
Gọi \(d = gcd \left(\right. 2 n - 1 , 3 n + 2 \left.\right)\), \(d > 1\).
Vì \(d \mid \left(\right. 2 n - 1 \left.\right)\) và \(d \mid \left(\right. 3 n + 2 \left.\right)\), nên \(d\) cũng chia được các tổ hợp tuyến tính của chúng:
\(d \mid \left(\right. 3 \times \left(\right. 2 n - 1 \left.\right) \left.\right) = 6 n - 3\) \(d \mid \left(\right. 2 \times \left(\right. 3 n + 2 \left.\right) \left.\right) = 6 n + 4\)Do đó,
\(d \mid \left(\right. \left(\right. 6 n + 4 \left.\right) - \left(\right. 6 n - 3 \left.\right) \left.\right) = 7\)Vậy \(d \mid 7\).
Vì \(d > 1\), nên \(d = 7\).
Điều kiện:
\(7 \mid \left(\right. 2 n - 1 \left.\right) \text{v} \overset{ˋ}{\text{a}} 7 \mid \left(\right. 3 n + 2 \left.\right)\)Tức là:
\(2 n - 1 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 2 n \equiv 1 \left(\right. m o d 7 \left.\right)\) \(3 n + 2 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 3 n \equiv - 2 \equiv 5 \left(\right. m o d 7 \left.\right)\)Giải từng phương trình modulo 7:
Nhân hai vế với nghịch đảo của 2 modulo 7. Vì \(2 \times 4 = 8 \equiv 1 \left(\right. m o d 7 \left.\right)\), nên nghịch đảo của 2 là 4.
\(n \equiv 4 \times 1 = 4 \left(\right. m o d 7 \left.\right)\)Nghịch đảo của 3 modulo 7 là 5 vì \(3 \times 5 = 15 \equiv 1 \left(\right. m o d 7 \left.\right)\)
\(n \equiv 5 \times 5 = 25 \equiv 4 \left(\right. m o d 7 \left.\right)\)Kết luận:
Cả hai điều kiện đều yêu cầu:
\(n \equiv 4 \left(\right. m o d 7 \left.\right)\)Vậy các số nguyên \(n\) thỏa mãn là:
\(n = 7 k + 4 , k \in \mathbb{Z}\)Bài 2: Cho
\(A = \frac{10 n}{5 n - 3} , n \in \mathbb{Z}\)a) Tìm \(n\) để \(A\) có giá trị nguyên
Điều kiện:
- Mẫu số khác 0:
\(5 n - 3 \neq 0 \Rightarrow n \neq \frac{3}{5}\)Phân tích:
Giả sử \(d = 5 n - 3\), ta cần \(d \mid 10 n\).
Ta có:
\(d = 5 n - 3 \Rightarrow 5 n = d + 3\)Thay vào biểu thức \(10 n = 2 \times 5 n = 2 \left(\right. d + 3 \left.\right) = 2 d + 6\).
Vì \(d \mid 10 n\), tức là \(d \mid 2 d + 6\).
Mà \(d \mid 2 d\) nên \(d \mid 6\).
Tóm lại:
\(5 n - 3 = d \mid 6\)Vậy \(5 n - 3\) là ước của 6.
Các ước của 6 là: \(\pm 1 , \pm 2 , \pm 3 , \pm 6\).
Tìm \(n\) ứng với từng giá trị:
Vậy các giá trị nguyên \(n\) thỏa mãn là:
\(n = 0 , n = 1\)Kiểm tra giá trị \(A\):
- Với \(n = 0\):
\(A = \frac{10 \times 0}{5 \times 0 - 3} = \frac{0}{- 3} = 0\)- Với \(n = 1\):
\(A = \frac{10 \times 1}{5 \times 1 - 3} = \frac{10}{2} = 5\)b) Tìm giá trị lớn nhất của \(A\)
Ta xét hàm số:
\(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)với \(n \in \mathbb{Z}\), \(n \neq \frac{3}{5}\).
Phân tích:
Tính giá trị \(A \left(\right. n \left.\right)\) tại một số \(n\) nguyên:
\(n\)nnn
\(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)A(n)=10n5n−3A(n) = \frac{10n}{5n - 3}A(n)=5n−310n
Giá trị
0
0
0
1
\(\frac{10}{2} = 5\)102=5\frac{10}{2} = 5210=5
5
2
\(\frac{20}{7} \approx 2.86\)207≈2.86\frac{20}{7} \approx 2.86720≈2.86
2.86
3
\(\frac{30}{12} = 2.5\)3012=2.5\frac{30}{12} = 2.51230=2.5
2.5
4
\(\frac{40}{17} \approx 2.35\)4017≈2.35\frac{40}{17} \approx 2.351740≈2.35
2.35
5
\(\frac{50}{22} \approx 2.27\)5022≈2.27\frac{50}{22} \approx 2.272250≈2.27
2.27
-1
\(\frac{- 10}{- 8} = 1.25\)−10−8=1.25\frac{-10}{-8} = 1.25−8−10=1.25
1.25
-2
\(\frac{- 20}{- 13} \approx 1.54\)−20−13≈1.54\frac{-20}{-13} \approx 1.54−13−20≈1.54
1.54
-3
\(\frac{- 30}{- 18} = 1.67\)−30−18=1.67\frac{-30}{-18} = 1.67−18−30=1.67
1.67
Nhận xét:
Tóm tắt đáp án:
Nếu bạn cần giải thích thêm hoặc bài toán khác, cứ hỏi nhé!