Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thời gian người thứ nhất xây một mình xong bức tường là \(x\) (giờ), thời gian người thứ hai xây một mình xong bức tường là \(y\) (giờ); \(x>0;y>0\). Coi toàn bộ công việc như một đơn vị công việc.

Gọi:
- \(x\) là chiều dài ban đầu (m)
- \(y\) là chiều rộng ban đầu (m)
Theo đề bài:
- Chu vi hình chữ nhật là 64m, tức:
\(2 \left(\right. x + y \left.\right) = 64 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = 32\)
- Khi tăng chiều dài thêm 2m và chiều rộng thêm 3m, diện tích tăng thêm 88 m². Diện tích ban đầu là \(x y\), diện tích sau tăng là \(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right)\). Do đó:
\(\left(\right. x + 2 \left.\right) \left(\right. y + 3 \left.\right) - x y = 88\)
Mở rộng và đơn giản:
\(x y + 3 x + 2 y + 6 - x y = 88\)\(3 x + 2 y + 6 = 88\)\(3 x + 2 y = 82\)
Hệ phương trình:
\(\left{\right. x + y = 32 \\ 3 x + 2 y = 82\)
Giải hệ:
Từ phương trình thứ nhất:
\(y = 32 - x\)
Thay vào phương trình thứ hai:
\(3 x + 2 \left(\right. 32 - x \left.\right) = 82\)\(3 x + 64 - 2 x = 82\)\(x + 64 = 82\)\(x = 18\)
Thay \(x = 18\) vào:
\(y = 32 - 18 = 14\)
Kết luận:
Chiều dài mảnh vườn là \(\boxed{18 \&\text{nbsp};\text{m}}\), chiều rộng là \(\boxed{14 \&\text{nbsp};\text{m}}\).
Tk
Nửa chu vi mảnh vườn là 64:2=32(m)
Gọi chiều dài và chiều rộng của mảnh vườn lần lượt là x(m) và y(m)
(Điều kiện: x>y>0)
Nửa chu vi mảnh vườn là 32m nên x+y=32(1)
Nếu tăng chiều dài thêm 2m và tăng chiều rộng thêm 3m thì diện tích tăng thêm \(88m^2\)
nên ta có: (x+2)(y+3)=xy+88
=>xy+3x+2y+6=xy+88
=>3x+2y=82(2)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}x+y=32\\ 3x+2y=82\end{cases}\Rightarrow\begin{cases}3x+3y=96\\ 3x+2y=82\end{cases}\)
=>\(\begin{cases}3x+3y-3x-2y=96-82\\ x+y=32\end{cases}\Rightarrow\begin{cases}y=14\\ x=32-14=18\end{cases}\) (nhận)
Vậy: chiều dài và chiều rộng của mảnh vườn lần lượt là 18(m) và 14(m)

Nửa chu vi hình chữ nhật là 30:2=15(cm)
Gọi chiều rộng ban đầu là x(cm)
(ĐIều kiện: x>0; x<15/2)
Chiều dài ban đầu là 15-x(cm)
Chiều rộng sau khi tăng thêm 2cm là x+2(cm)
Chiều dài sau khi tăng thêm 3cm là 15-x+3=18-x(cm)
Diện tích tăng thêm \(42cm^2\) nên ta có:
\(\left(x+2\right)\left(18-x\right)-x\left(15-x\right)=42\)
=>\(18x-x^2+36-2x-15x+x^2=42\)
=>x+36=42
=>x=6(nhận)
vậy: Chiều rộng ban đầu là 6cm
Chiều dài ban đầu là 15-6=9cm

Câu 4:
A B C E F H O I P K Q x
a) Vì BE,CF là các đường cao của \(\Delta\)ABC nên ^BEC = ^CFB = 900
=> ^BEC và ^CFB cùng nhìn đoạn BC dưới một góc 900
=> Bốn điểm B,C,E,F cùng thuộc đường tròn đường kính BC (Theo quỹ tích cung chứa góc) (đpcm).
b) Gọi Ax là tia tiếp tuyến tại A của đường tròn (O), khi đó OA vuông góc Ax
Từ câu a ta thấy tứ giác BFEC nội tiếp đường tròn (BC) => ^AFE = ^ACB
Mà ^ACB = ^BAx (Tính chất góc tạo bởi tiếp tuyến và dây) nên ^AFE = ^BAx
=> EF // Ax (2 góc so le trong bằng nhau)
Do OA vuông góc Ax nên OA vuông góc EF (Quan hệ song song, vuông góc) (đpcm).
c) +) Ta dễ có ^OAC = 900 - ^AOC/2 = 900 - ^ABC = ^BAH => ^OAC + ^OAH = ^BAH + ^OAH => ^BAI = ^EAP
Xét \(\Delta\)APE và \(\Delta\)AIB: ^EAP = ^BAI, ^AEP = ^ABI (Tứ giác BFEC nội tiếp) => \(\Delta\)APE ~ \(\Delta\)AIB (g.g) (đpcm).
+) Gọi AO cắt đường tròn (O) lần thứ hai tại Q. Khi đó AQ là đường kính của (O)
Nên ta có: ^ABQ = ^ACQ = 900 hay BQ vuông góc AB, CQ vuông góc AC. Mà CH vuông góc AB, BH vuông góc AC
Nên BQ // CH, BH // CQ (Quan hệ song song vuông góc) => Tứ giác BHCQ là hình bình hành
Từ đó HQ đi qua trung điểm K của BC hay H,K,Q thẳng hàng (1)
Cũng dễ thấy ^QBC = ^HCB (Vì BQ // CH) = ^FEH (Vì B,C,E,F cùng thuộc một đường tròn)
Hay ^QBI = ^HEP. Kết hợp với ^BQI = ^BQA = ^ACB = ^AHE (Cùng phụ ^CAH) = ^EHP
Suy ra \(\Delta\)BIQ ~ \(\Delta\)EPH (g.g) => \(\frac{HP}{QI}=\frac{EP}{BI}\). Lại có \(\frac{EP}{BI}=\frac{AP}{AI}\)nên \(\frac{HP}{QI}=\frac{AP}{AI}\)
Áp dụng ĐL Thales đảo vào \(\Delta\)AQH ta có IP // HQ (2)
Từ (1) và (2) ta thu được KH // IP (đpcm).
Nếu ko nhìn rõ thì bn có thể tham khảo tại:
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html
https://vnexpress.net/giao-duc/so-giao-duc-va-dao-tao-ha-noi-cong-bo-dap-an-thi-vao-lop-10-3934904.html
https://vietnamnet.vn/vn/giao-duc/tuyen-sinh/dap-an-mon-toan-thi-tuyen-sinh-lop-10-ha-noi-2019-cua-so-gd-dt-ha-noi-539465.html
https://tin.tuyensinh247.com/dap-an-de-thi-vao-lop-10-mon-toan-ha-noi-nam-2019-c29a45461.html
Bài 5: Gọi thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là x(ngày) và y(ngày)
(Điều kiện: x>0; y>0)
Trong 1 ngày, người thứ nhất làm được: \(\frac{1}{x}\) (công việc)
Trong 1 ngày, người thứ hai làm được: \(\frac{1}{y}\) (công việc)
Trong 1 ngày, hai người làm được: \(\frac16\) (công việc)
Do đó, ta có: \(\frac{1}{x}+\frac{1}{y}=\frac16\left(1\right)\)
Trong 3 ngày, người thứ nhất làm được: \(\frac{3}{x}\) (công việc)
Trong 3+4=7 ngày, người thứ hai làm được: \(\frac{7}{y}\) (công việc)
Sau khi làm chung trong 3 ngày thì người thứ nhất đi làm việc khác, người thứ hai hoàn thành phần còn lại trong 4 ngày nên ta có: \(\frac{3}{x}+\frac{7}{y}=1\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac16\\ \frac{3}{x}+\frac{7}{y}=1\end{cases}\Rightarrow\begin{cases}\frac{3}{x}+\frac{3}{y}=\frac36=\frac12\\ \frac{3}{x}+\frac{7}{y}=1\end{cases}\)
=>\(\begin{cases}\frac{3}{x}+\frac{7}{y}-\frac{3}{x}-\frac{3}{y}=1-\frac12=\frac12\\ \frac{1}{x}+\frac{1}{y}=\frac16\end{cases}\Rightarrow\begin{cases}\frac{4}{y}=\frac12\\ \frac{1}{x}=\frac16-\frac{1}{y}\end{cases}\)
=>\(\begin{cases}y=8\\ \frac{1}{x}=\frac16-\frac18=\frac{1}{24}\end{cases}\Rightarrow\begin{cases}y=8\\ x=24\end{cases}\) (nhận)
Vậy: thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là 24(ngày) và 8(ngày)
Bài 3:
Gọi số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là x(sản phẩm) và y(sản phẩm)
(Điều kiện: x,y∈N*)
Tổng số sản phẩm hai tổ làm được trong tháng thứ nhất là 500 sản phẩm nên x+y=500(3)
Số sản phẩm tổ 1 làm được trong tháng thứ hai là: \(x\left(1+10\%\right)=1,1x\) (sản phẩm)
Số sản phẩm tổ 2 làm được trong tháng thứ hai là:
\(y\left(1+15\%\right)=1,15y\) (sản phẩm)
Tổng số sản phẩm hai tổ làm được trong tháng thứ hai là 564 sản phẩm nên 1,1x+1,15y=564(4)
Từ (3),(4) ta có hệ phương trình:
\(\begin{cases}x+y=500\\ 1,1x+1,15y=564\end{cases}\Rightarrow\begin{cases}1,1x+1,1y=550\\ 1,1x+1,15y=564\end{cases}\)
=>\(\begin{cases}1,1x+1,15y-1,1x-1,1y=564-550=14\\ x+y=500\end{cases}\)
=>\(\begin{cases}0,05y=14\\ x+y=500\end{cases}\Rightarrow\begin{cases}y=280\\ x=500-280=220\end{cases}\) (nhận)
Vậy: số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là 220(sản phẩm) và 280(sản phẩm)