K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

11 tháng 3 2017

1)

gọi ƯC(3n-2,4n-3) là d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)

=>ƯC(3n-2,4n-3)={1;-1}

=>\(\frac{3n-2}{4n-3}\)là p/số tối giản

vậy...

12 tháng 2 2018

a; Gọi UCLN(3n-2; 4n-3)= d (d thuộc N sao)

=> 4n-3-(3n-2) chia hết cho d <=> 1 chia hết cho d=> d=1 => UCLN của 3n-2 và 4n-3 là 1

=> 3n-2/4n-3 là phân số tối giản

b tương tự (nhân 6 vs tử, nhân 4 vs mẫu rồi trừ)

12 tháng 2 2018

a) Gọi d là ƯCLN(3n - 2, 4n - 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}}\)

\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n-2,4n-3\right)=1\)

\(\Rightarrow\frac{3n-2}{4n-3}\) là phân số tối giản.

b) Gọi d là ƯCLN(4n + 1, 6n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}}\)

\(\Rightarrow\left(12n+3\right)-\left(12n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(4n+1,6n+1\right)=1\)

\(\Rightarrow\frac{4n+1}{6n+1}\) là phân số tối giản.

27 tháng 1 2021

Gọi \(\left(n+1,3n+2\right)=d\)   \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}}\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)

\(\Rightarrow3n+3-3n-2⋮d\)

\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\) \(\Rightarrow d=1\)

\(\Rightarrow\left(n+1,3n+2\right)=1\)

\(\Rightarrow\) Phân số \(\frac{n+1}{3n+2}\) tối giản   (đpcm)

27 tháng 1 2021

\(\frac{n+1}{3n+2}\left(n\in Z\right)\)

Đặt \(n+1;3n+2=d\left(d\inℕ^∗\right)\)

\(n+1⋮d\Rightarrow3n+3⋮d\)(1)

\(3n+2⋮d\)(2) 

Lấy (1) - (2) suy ra : 

\(3n+3-3n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm