K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Ta thấy pt(1) có nghiệm do ac = -1 < 0

Gọi x1 ; x2 là nghiệm của (1) , ta có : x1 + x= -5 ; x1x=-1

Gọi y1 ; y2 là các nghiệm của pt cần lập , ta được : y1 + y2 = x14 + x2; y1y2 = x14 . x24

Ta có : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12.x22

= [( x1 + x2 )2 - 2x1x2 ]2 - 2(x1x2)2 = 729 - 2 = 727

y1.y2 = x14 . x24 = ( x1 . x2 )4 = 1

Vậy pt cần lập là y2 - 727y + 1 = 0

DD
20 tháng 6 2021

\(\Delta=5^2+4=29>0\)nên phương trình có hai nghiệm phân biệt \(x_1,x_2\).

Theo Viete: 

\(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=-1\end{cases}}\)

\(x_1^4x_2^4=\left(-1\right)^4=1\)

\(x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left(25+2\right)^2-2=727\)

Theo định lí Viete đảo, phương trình bậc hai nhận \(x_1^4,x_2^4\)là nghiệm là: 

\(X^2-727X+1=0\)

6 tháng 4 2019

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\end{cases}}\)

Ta có \(S=y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                                                                           \(=-\frac{5}{3}+\frac{\frac{-5}{3}}{-2}=-\frac{5}{6}\)

       \(P=x_1x_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=-\frac{1}{2}\)

Khi đó y1 ; y2 là nghiệm của pt

\(Y^2-SY+P=0\) 

\(\Leftrightarrow Y^2+\frac{5}{6}Y-\frac{1}{2}=0\)

28 tháng 4 2021

1. Với m = -1 

Phương trình đã cho trở thành x2 + 2x - 3 = 0

Dễ thấy phương trình có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = -3

Vậy ...

2. a) Để phương trình có hai nghiệm phân biệt thì Δ' > 0

=> 1 - ( 4m + 1 ) > 0

<=> 1 - 4m - 1 > 0 <=> m < 0

b) Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2\\x_1x_2=\frac{c}{a}=4m+1\end{cases}}\)

Để phương trình có hai nghiệm trái dấu thì x1x2 < 0 <=> 4m + 1 < 0 <=> m < -1/4

c) x12 + x22 = 11 <=> ( x1 + x2 )2 - 2x1x2 = 11

<=> 4 - 2( 4m + 1 ) = 11

<=> -8m - 2 = 7

<=> m = -9/8

28 tháng 4 2021

giải dùm vs ạ

5 tháng 4 2019

Mik cần gấp vì chj nay phải đi hok.

10 tháng 5 2020

có ai không 

10 tháng 5 2020

ai làm được thì tích

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

NV
23 tháng 4 2019

\(\Delta'=1-m+1=2-m\ge0\Rightarrow m\le2\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-1\end{matrix}\right.\)

Để pt có 2 nghiệm là nghịch đảo nhau \(\Leftrightarrow x_1x_2=1\)

\(\Rightarrow m-1=1\Rightarrow m=2\)

\(\left\{{}\begin{matrix}y_1=x_1+\frac{1}{x_2}\\y_2=x_2+\frac{1}{x_1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=\frac{\left(x_1x_2+1\right)^2}{x_1x_2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-2-\frac{2}{m-1}=\frac{-2m}{m-1}\\y_1y_2=\frac{m^2}{m-1}\end{matrix}\right.\)

Theo Viet đảo, \(y_1;y_2\) là nghiệm: \(y^2+\frac{2m}{m-1}y+\frac{m^2}{m-1}=0\) (\(m\ne1\))

26 tháng 4 2019

cảm ơn nhiều nhé

1 tháng 5 2020

có ai trả lời không

2 tháng 5 2020

bn tính delta xong xét đk là đc nhé xD lười quá