K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9

Đây nhé bé

Câu1

\(\mid x \mid \geq 0 \Rightarrow \mid x \mid + 1 \geq 1\).
Do đó \(\left(\right. \mid x \mid + 1 \left.\right)^{10} \geq 1^{10} = 1\).

Suy ra:

\(A = \left(\right. \mid x \mid + 1 \left.\right)^{10} + 2023 \geq 1 + 2023 = 2024.\)

Dấu “=” chỉ xảy ra khi \(\mid x \mid = 0 \Leftrightarrow x = 0\).

\(\Rightarrow\) Giá trị nhỏ nhất của \(A\)\(\boxed{2024}\), đạt tại \(x = 0\).

Câu 2 ( câu này kiến thức nâng cao nhé em nên là khi em đọc lời giải sẽ có khó hiểu nhé )

Đặt \(n = 2022\). Khi đó:

\(A = \frac{n^{2022} + 1}{n^{2023} + 1} , B = \frac{n^{2021} + 1}{n^{2022} + 1} .\)

Xét tổng quát với \(a_{k} = \frac{n^{k} + 1}{n^{k + 1} + 1} , \left(\right. n > 1 \left.\right)\).

Ta gọi k là luỹ thừa của cơ số

\(a_{k} > a_{k - 1} \textrm{ }\textrm{ } \Longleftrightarrow \textrm{ }\textrm{ } \left(\right. n^{k} + 1 \left.\right)^{2} > \left(\right. n^{k + 1} + 1 \left.\right) \left(\right. n^{k - 1} + 1 \left.\right) .\)

Xét hiệu:

\(\left(\right.n^{k}+1\left.\right)^2-\left(\right.n^{k+1}+1\left.\right)\left(\right.n^{k-1}+1\left.\right)=-n^{k-1}\left(\right.n-1\left.\right)^2<0\)

Vậy \(a_{k} < a_{k - 1}\), tức dãy \(\left(\right. a_{k} \left.\right)\) giảm dần theo \(k\)

Do đó:

\(A = a_{2022} < a_{2021} = B .\)

\(\Rightarrow B>A\)

Câu3

Ta đổi : \(27 = 3^{3}\), \(9 = 3^{2}\), \(125 = 5^{3}\).

\(\frac{5^{16} \cdot \left(\right. 3^{3} \left.\right)^{7}}{\left(\right. 5^{3} \left.\right)^{5} \cdot \left(\right. 3^{2} \left.\right)^{11}} = \frac{5^{16} \cdot 3^{21}}{5^{15} \cdot 3^{22}} = 5^{16 - 15} \cdot 3^{21 - 22} = \frac{5}{3} .\)

Vậy kết quả bằng \(\frac{5}{3}\).

Câu 3:

\(\frac{5^{16}\cdot27^7}{125^5\cdot9^{11}}\)

\(=\frac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}=\frac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}\)

\(=\frac53\)

Câu 2:

\(2022A=\frac{2022^{2023}+2022}{2022^{2023}+1}=1+\frac{2021}{2022^{2023}+1}\)

\(2022B=\frac{2022^{2022}+2022}{2022^{2022}+1}=1+\frac{2021}{2022^{2022}+1}\)

Ta có: \(2022^{2023}+1>2022^{2022}+1\)

=>\(\frac{2021}{2022^{2023}+1}<\frac{2021}{2022^{2022}+1}\)

=>\(\frac{2021}{2022^{2023}+1}+1<\frac{2021}{2022^{2022}+1}+1\)

=>2022A<2022B

=>A<B

Câu 1:

\(\left|x\right|\ge0\forall x\)

=>\(\left|x\right|+1\ge1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}\ge1^{10}=1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}+2023\ge1+2023=2024\forall x\)

Dấu '=' xảy ra khi x=0

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

16 tháng 1 2023

\(\left(x+3\right)^{2022}+\left(\sqrt{y-2}-1\right)^{2023}=0\)    \(\left(ĐKXĐ: y\ge2\right)\)

Xét \(\left(x+3\right)^{2022}\ge0\forall x\)

\(\Rightarrow\left(\sqrt{y-2}-1\right)^{2023}\le0\)

\(\Leftrightarrow\sqrt{y-2}-1\le0\)

\(\Leftrightarrow\sqrt{y-2}\le1\) 

\(\Leftrightarrow y-2\le1\)

\(\Rightarrow y\le3\)

\(\Rightarrow2\le y\le3\) mà \(y\in Z\)

\(\Rightarrow\left\{{}\begin{matrix}y=2\Leftrightarrow x=-2\\y=3\Leftrightarrow x=-3\end{matrix}\right.\)

Em không nghĩ câu này đúng. Anh giải thích hộ bạn đó với ạ. 

9 tháng 7 2023

A = 7 - 8 + 9 -10 + 11 - 12 +...+ 2009 - 2010

A = (7-8) + (9 - 10) + ( 11 - 12) +...+ ( 2009 - 2010)

Xét dãy số: 7; 9; 11;...; 2009

Dãy số trên là dãy số cách đều với khoảng cách là: 9 - 7 = 2

Dãy số trên có số số hạng là: (2009 - 7) : 2 + 1 = 1002

Vậy tổng A có 1002 nhóm mỗi nhóm có giá trị là: 7 - 8 = -1

A = -1 \(\times\) 1002 = - 1002

B  = 1 - 2 - 3 - 4 -...- 2022 - 2023

B = 1 - ( 2 + 3 + 4 +...+ 2022 + 2023)

B = 1 - (2 + 2023).{ ( 2023 - 2): 1 + 1}: 2 = -2047274

 

1 tháng 12 2023

A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)

Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)

      TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1 

      TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)

      TS =  2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))

A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)

 A = 2023

1 tháng 12 2023

Em cảm ơn ạ

4 tháng 7 2023

Trước hết ta phải chứng minh \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Thật vậy, \(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{a+ab}{b^2+b}\) và \(\dfrac{a+1}{b+1}=\dfrac{\left(a+1\right)b}{\left(b+1\right)b}=\dfrac{ab+b}{b^2+b}\).

Mà theo giả thuyết là a < b nên \(\dfrac{a+ab}{b^2+b}< \dfrac{ab+b}{b^2+b}\), suy ra \(\dfrac{a}{b}< \dfrac{a+1}{b+1}\) (a, b ϵ N; a < b).

Từ đây ta có:

\(B=\dfrac{2022^{2022}+1}{2022^{2023}+1}=\dfrac{2022^{2023}+2022}{2022^{2024}+2022}=\dfrac{2022^{2023}+2021+1}{2022^{2024}+2021+1}\)

Đặt \(A_1=\dfrac{2022^{2023}+2}{2022^{2024}+2}=\dfrac{2022^{2023}+1+1}{2022^{2024}+1+1}\), rõ ràng \(A_1>A\).

Đặt \(A_2=\dfrac{2022^{2023}+3}{2022^{2024}+3}=\dfrac{2022^{2023}+2+1}{2022^{2024}+2+1}\), rõ ràng \(A_2>A_1\).

...

Đặt \(A_{2020}=\dfrac{2022^{2023}+2021}{2022^{2024}+2021}=\dfrac{2022^{2023}+2020+1}{2022^{2024}+2020+1}\), rõ ràng \(A_{2020}>A_{2019}\) và \(B>A_{2020}\).

Suy ra \(B>A_{2020}>A_{2019}>...>A_2>A_1>A\). Vậy A < B.

4 tháng 7 2023

Ta có A = \(\dfrac{2022^{2023}}{2022^{2024}}=\dfrac{1}{2022}\) ; B = \(\dfrac{2022^{2022}}{2022^{2023}}=\dfrac{1}{2022}\)

Mà \(\dfrac{1}{2022}=\dfrac{1}{2022}\)

Vậy A = B

16 tháng 12 2023

olm sẽ hướng dẫn em làm bài này như sau:

Bước 1: em giải phương trình tìm; \(x\); y

Bước 2:  thay\(x;y\) vào P

(\(x-1\))2022 + |y + 1| = 0

Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0  ∀ y

⇒ (\(x\) - 1)2022  + |y + 1| = 0

⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1) 

Thay (1) vào P ta có:

12023.(-1)2022 : )(2.1- 1)2022 +  2023

=  1 + 2023

= 2024

16 tháng 12 2023

a+b+c=12