Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi (n + 3,n + 2) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+2⋮d\end{cases}}\Leftrightarrow\left(n+3\right)-\left(n+2\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
=> (n + 3, n + 2) = 1
=> ĐPCM
b) Gọi (2n + 3; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Leftrightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
=> \(2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
Khi d = 2 nhận thấy 2n + 3 \(⋮̸\)2 \(\forall n\)
=> d = 2 loại
=> d = 1
=> ĐPCM

a)Ta có:
n+(n+1)+(n+2)=n+n+1+n+2
=3n+(1+2+3)
=3n+6.
=3(n+2)
Vì n+2EN.
=>3(n+2) chia hết cho 3.
b)Cách lm tương tự.
Ủng hộ nhá!
a) gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ( a thuộc N )
ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 = 3.( a + 1 ) chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi tổng 4 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2 ; a + 3 ( a thuộc N )
ta có : a + ( a + 1 ) + ( a + 2 ) + ( a +3 ) = 4a + 6 không chia hết cho 4 ( không chia hết cho 4 )
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4

Đặt ƯCLN(5n+6;4n+5)=d(\(d\inℕ^∗\))
\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\4n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}4.\left(5n+6\right)⋮d\\5.\left(4n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+24⋮d\\20n+25⋮d\end{cases}}}\)
\(\Rightarrow20n+25-\left(20n+24\right)⋮d\)
\(\Leftrightarrow20n+25-20n-24⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Rightarrow d=1\)(Vì \(d\inℕ^∗\))
\(\RightarrowƯCLN\left(5n+6;4n+5\right)=1\)
\(\Rightarrow\frac{5n+6}{4n+5}\)là phân số tối giản với mọi số nguyên n
Vậy.......
Gọi \(Gọi ( 5 n + 6 ; 4 n + 5 ) = d\)
\(⇒ d | 5 ( 4 n + 5 ) − 4 ( 5 n + 6 ) = 20 n + 25 − 20 n − 24 = 1\)
\(⇒ ( 5 n + 6 ; 4 n + 5 ) = 1\)
\(⇒ A\) tối giản với mọi số nguyên n
b: Gọi d=ƯCLN(7n+8;8n+9)
=>\(\begin{cases}7n+8\vdots d\\ 8n+9\vdots d\end{cases}\Rightarrow\begin{cases}56n+64\vdots d\\ 56n+63\vdots d\end{cases}\)
=>56n+64-56n-63⋮d
=>1⋮d
=>d=1
=>ƯCLN(7n+8;8n+9)=1
=>7n+8 và 8n+9 là hai số nguyên tố cùng nhau
a: Trong các số từ 10 đến 19, có 10 số có chữ số hàng chục là 1; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 20 đến 29, có 10 số có chữ số hàng chục là 2; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 30 đến 39, có 10 số có chữ số hàng chục là 3; các chữ số hàng đơn vị là các số từ 0 đến 9
Trong các số từ 40 đến 49, có 10 số có chữ số hàng chục là 4; các chữ số hàng đơn vị là các số từ 0 đến 9
...
Trong các số từ 80 đến 89, có 10 số có chữ số hàng chục là 8; các chữ số hàng đơn vị là các số từ 0 đến 9
Tổng của các chữ số hàng chục là:
\(10\left(1+2+\cdots+8\right)=10\left(8\cdot\frac92\right)=10\cdot4\cdot9=40\cdot9=360\)
Tổng của các chữ số hàng đơn vị là:
\(\left(0+1+2+\cdots+9\right)\times\left(8-1+1\right)=8\times9\times\frac{10}{2}=8\times5\times9=40\times9=360\)
Tổng các chữ số trong số A là:
360+360=720⋮9
=>A⋮9