K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

Ta có : 1/2^2<1/1.2

           1/3^2 < 1/2.3

          1/4^2<1/3.4

           ................

             .............

            1/50^2<1/49.50

=> 1/2^2+1/3^2+1/4^2+1/5^2+.....+1/50^2 < 1/1.2+1/2.3+1/3.4+....+1/49.50

=> 1/2^2+1/3^2+1/4^2+1/5^2+.....+1/50^2 < 1-1/50

=> 1/2^2+1/3^2+1/4^2+1/5^2+.....+1/50^2 < 49/50 < 1

Vậy 1/2^2+1/3^2+1/4^2+1/5^2+.....+1/50^2 < 1 

11 tháng 4 2018

\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(M< \dfrac{1}{4}+\left(\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}+M_1\)

\(M_1=\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{48}-\dfrac{1}{49}\right)+\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(M_1=\dfrac{1}{2}+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{49}+\dfrac{1}{49}\right)-\dfrac{1}{50}=\dfrac{1}{2}-\dfrac{1}{50}\)

\(M< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{3}{4}-\dfrac{1}{50}< \dfrac{3}{4}=>dpcm\)

17 tháng 5 2016

Đặt A=1/2^2+1/3^2+1/4^2+...+1/50^2

       A<1/1*2+1/2*3+1/3*4+...+1/49*50

       A<1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

      A<1-1/50<1

Vậy A<1

17 tháng 5 2016

Ta có:\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\left(đpcm\right)\)

20 tháng 4 2017

\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)<1

ta có \(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)

       \(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)

    ..........................

    \(\frac{1}{50^2}\)<\(\frac{1}{49.50}\)

ta được \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{49.50}\)

          =>1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-...-\(\frac{1}{49}\)+\(\frac{1}{49}\)-\(\frac{1}{50}\)

          =>1-\(\frac{1}{50}\)<1 nên\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)<1

vậy ...........................