
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) 6x2 - 12x
= 6x(x - 2)
b) x2 + 2x + 1 - y2
= (x2 + 2x + 1) - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
c) x + y + z + x2 + xy + xz
= (x + x2) + (y + xy) + (z + xz)
= x(1 + x) + y(1 + x) + z(1 + x)
= (x + y + z)(x + 1)
d) xy + xz + y2 + yz
= (xy + xz) + (y2 + yz)
= x(y + z) + y(y + z)
= (x + y)(x + z)
e) x3 + x2 + x + 1
= (x3 + x2) + (x + 1)
= x2(x + 1) + (x + 1)
= (x2 + 1)(x + 1)
f) xy + y - 2x - 2
= (xy + y) - (2x + 2)
= y(x + 1) - 2(x + 1)
= (y - 2)(x + 1)
g) x3 + 3x - 3x2 - 9
= (x3 - 3x2) + (3x - 9)
= x2(x - 3) + 3(x - 3)
= (x2 + 3)(x - 3)
h) x2 - y2 - 2x - 2y
= (x2 - y2) - (2x + 2y)
= (x + y)(x - y) - 2(x + y)
= (x + y)(x - y - 2)
i) 7x2 - 7xy - 5x = 5y
mk thấy con này sai sai ý

a)\(^{ }\left(-2\right)^5:\left(-2\right)^3=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)
b)\(\left(-y\right)^7:\left(-y\right)^3=\left(-y\right)^{7-3}=\left(-y\right)^4\)
c)\(x^{12}:\left(-x^{10}\right)=-\left(x^{12}\right):\left(x^{10}\right)=-\left(x^{12-10}\right)=-\left(x^2\right)\)
d)\(\left(2x^6\right):\left(2x\right)^3=2\left(x^6\right):8\left(x^3\right)=\frac{2}{8}x^{6-3}=\frac{1}{4}x^3\)
e)\(\left(-3x\right)^5;\left(-3x\right)^3=\left(-3x\right)^{5-3}=\left(-3x\right)^2\)
f)\(\left(xy^2\right)^4:\left(xy^2\right)^2=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2\)

Bài làm
a) \(\left(-2\right)^5:\left(-2\right)^3\)
\(=\left(-2\right)^{5-3}\)
\(=\left(-2\right)^2\)
\(=4\)
b) \(\left(-y\right)^7:\left(-y\right)^3=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)
c) \(x^{12}:\left(-x\right)^{10}=x^{12}:x^{10}=x^{12-10}=x^2\)
d) \(\left(2x\right)^6:\left(2x\right)^3=\left(2x\right)^{6-3}=\left(2x\right)^3=8x^3\)
e) \(\left(-3x\right)^5:\left(-3x\right)^2=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)
f) \(\left(xy^2\right)^4:\left(xy^2\right)^2=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)
# Học tốt #
a) (-2)5 : (-2)3 = (-2)2
b) (-y)7 : (-y)3 = (-y)4
c) x12 : (-x10) = (-x)12
d) 2x6 : 2x3 = 2x3
e) (-3x)5 : (-3x)2 = (-3x)3
f) (xy2)4 : (xy2)2 = (xy2)2

\(A=\left(3x+5\right)\left(2x-1\right)-\left(1-4x\right)\left(3x+2\right)\)
\(=6x^2+7x-5+12x^2+5x-2\)
\(=18x^2+12x-7\)
\(\left|x\right|=2\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Thay \(x=-2\) vào biểu thức A ta được :
\(A=18\left(-2\right)^2+12\left(-2\right)-7=41\)
Thay \(x=2\) vào biểu thức A ta được :
\(A=18.2^2+12.2-7=89\)
\(B=\left(2x+y\right)\left(2x-y\right)+xy\left(x-y\right)-xy\left(x+y\right)\)
\(=4x^2-y^2+x^2y-xy^2-x^2y-xy^2\)
\(=4x^2-2xy^2-y^2\)
Thay \(x=0\) và \(y=-1\) vào biểu thức B ta được :
\(B=4.0^2-2.0.\left(-1\right)^2-\left(-1\right)^2=-1\)

Bài 1. Rút gọn:
\(a, x\left(1-x\right)+6\left(x+3\right)\left(x+3\right)\)
\(=x-x^2+6\left(x^2+6x+9\right)\)
\(=x-x^2+6x^2+36x+54\)
\(=5x^2+37x+54\)
\(b, \left(2-3x\right)\left(2+3x\right)-\left(x+5\right)\left(x-5\right)\)
\(=\left(4-9x^2\right)-\left(x^2-25\right)\)
\(=-10x^2+29\)
\(c, \left(3x+1\right)\left(x+5\right)-\left(x-1\right)\left(x+1\right)\)
\(=3x^2+15x+x+5-x^2+1\)
\(=2x^2+16x+6\)
\(d,\left(2-3x\right)\left(2x+3\right)+6\left(x-1\right)^2\)
\(=\left(4x+6-6x^2-9x\right)+6\left(x^2-2x+1\right)\)
\(=4x+6-6x^2-9x+6x^2-12x+6\)
\(=-17x+12\)
\(e, x\left(5-x\right)-\left(2x+2\right)\left(3x+2\right)-\left(x-2\right)\left(x+2\right)\)
\(=5x-x^2-\left(6x^2+4x+6x+4\right)-\left(x^2-4\right)\)
\(=5x-x^2-6x^2-4x-6x-4-x^2+4\)
\(=-8x^2-5x\)
Bài 2:
a: VT\(=x^3-xy+x^2y^2-y^3-x^3+y^3-x^2y^2\)
=-xy
b: \(VT=x^2+6xy+9y^2-x^2+9y^2-6xy=18y^2=VP\)
1: \(=-3x^3y\cdot2x^2y^3+3x^3y\cdot xy^2+3x^3y\cdot\dfrac{1}{3}\cdot5\)
\(=-6x^5y^4+3x^4y^3+5x^3y\)
2: \(=\dfrac{1}{3}x\cdot3x-\dfrac{1}{3}x\cdot6+2\cdot3x-6\cdot2\)
\(=x^2-2x+6x-12=x^2+4x-12\)