
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
1: xx'⊥AD
yy'⊥AD
Do đó: xx'//yy'
2:
Cách 1:
xx'//yy'
=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)
=>\(\hat{C_1}=70^0\)
Cách 2:
ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)
=>\(\hat{xBC}=180^0-70^0=110^0\)
Ta có: xx'//yy'
=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{C_1}=180^0-110^0=70^0\)
Bài 2:
a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên mm'//nn'
b: Cách 1:
ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)
=>\(\hat{mAD}=180^0-70^0=110^0\)
Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)
=>\(\hat{D_1}=110^0\)
Cách 2:
Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)
mà \(\hat{xAm}=70^0\)
nên \(\hat{BAD}=70^0\)
Ta có: AB//CD
=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{D_1}=180^0-70^0=110^0\)
What the heo