
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xét ΔOAB có \(OA^2+OB^2=AB^2\)
nên ΔOAB vuông tại O
=>\(\hat{AOB}=90^0\)
=>số đo cung nhỏ AB=90 độ
Số đo cung lớn AB là \(360^0-90^0=270^0\)

a: Xét ΔAOB có OA=OB=AB(=R)
nên ΔOAB đều
=>\(\hat{AOB}=60^0\)
b: Số đo cung lớn AB là:
\(360^0-60^0=300^0\)

Ta có ΔABC đều
=>\(\hat{ACB}=60^0\)
Xét (O) có \(\hat{ACB}\) là góc nội tiếp chắn cung AB
=>\(\hat{AOB}=2\cdot\hat{ACB}=2\cdot60^0=120^0\)

Vì \(\hat{AOD}=\hat{BOC}\) (hai góc đối đỉnh)
mà sđ cung AD=\(\hat{AOD}\)
và sđ cung BC=\(\hat{BOC}\)
nên sđ cung AD=sđ cung BC
=>\(\overgroup{AD}=\overgroup{BC}\)

C là điểm chính giữa của cung nhỏ AB
=>OC là phân giác của góc AOB
=>\(\) \(\hat{BOC}=\frac12\cdot\hat{AOB}=\frac12\cdot120^0=60^0\)
=>Số đo cung nhỏ BC là 60 độ
Số đo cung lớn BC là \(360^0-60^0=300^0\)

Bài 1:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=10^2-8^2=36=6^2\)
=>AB=6(cm)
Xét ΔABC vuông tại A có \(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)
\(cosB=\frac{BA}{BC}=\frac{6}{10}=\frac35\)
tanB\(=\frac{AC}{AB}=\frac86=\frac43\)
\(\cot B=\frac{AB}{AC}=\frac68=\frac34\)
Bài 2:
a: \(A=\frac{\sin45\cdot cos45}{\cot60^0}=\frac{\frac{\sqrt2}{2}\cdot\frac{\sqrt2}{2}}{\tan30^0}=\frac24:\frac{1}{\sqrt3}=\frac12\cdot\sqrt3=\frac{\sqrt3}{2}\)
b: \(B=\frac{\sin70^0\cdot\tan40^0}{cos20^0\cdot\cot50^0}=\frac{\sin70^0\cdot\cot50^0}{\sin70^0\cdot\cot50^0}=1\)
Bài 3:
Kẻ BH⊥AC tại H
Xét ΔAHB vuông tại H có \(\sin A=\frac{BH}{AB}\)
=>\(BH=AB\cdot\sin A\)
Xét ΔABC có BH là đường cao
nên \(S_{ACB}=\frac12\cdot BH\cdot AC\)
=>\(S_{ABC}=\frac12\cdot AB\cdot AC\cdot\sin BAC\)
Xét ΔOCB có
CH là đường trung tuyến
CH là đường cao
DO đó: ΔOCB cân tại C
=>OC=CB
mà OC=OB
nên OC=OB=CB
=>ΔOBC đều
=>\(\hat{COB}=60^0\)
ΔOCD cân tại O
mà OH là đường cao
nên OH là phân giác của góc COD
=>\(\hat{COD}=2\cdot\hat{COH}=2\cdot60^0=120^0\)
=>Số đo cung nhỏ CD là 120 độ
Số đo cung lớn CD là:
\(360^0-120^0=240^0\)