Viết một bài thơ nói về sở thích điểm mạnh và điểm yếu
Viết một bài thơ nói về Sở trường điểm mạnh điểm yếu của emHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Qua S dựng đường thẳng d//AD
d//AD; \(S\in\left(SAD\right)\Rightarrow d\in\left(SAD\right)\)
d//AD;AD//BC => d//BC mà \(S\in\left(SBC\right)\Rightarrow d\in\left(SBC\right)\)
=> d chính là giao tuyến của (SAD) và (SBC)
b/
Trong (SAC) gọi I là giao của AM với SO
\(I\in SO;SO\in\left(SBD\right)\Rightarrow I\in\left(SBD\right)\)
=> I là giao của AM với (SBD)
Ta có BC//AD \(\Rightarrow\dfrac{OC}{OA}=\dfrac{BC}{AD}=\dfrac{1}{2}\)
2 tg SAM và tg CAM có chung đường cao từ A->SC và MS=MC nên \(S_{SAM}=S_{CAM}=S\)
2 tg AMO và tg CMO có chung đường cao từ M->AC nên
\(\dfrac{S_{AMO}}{S_{CMO}}=\dfrac{OA}{OC}=2\Rightarrow\dfrac{S_{AMO}}{2}=S_{CMO}=\dfrac{S_{AMO}+S_{CMO}}{2+1}=\dfrac{S_{CAM}}{3}\)
\(\Rightarrow\dfrac{S_{AMO}}{S_{CAM}}=\dfrac{S_{AMO}}{S_{SAM}}=\dfrac{2}{3}\)
2 tg AMO và tg SAM có chung AM nên
\(\dfrac{S_{AMO}}{S_{SAM}}=\) đường cao từ O->AM/đường cao từ S->AM \(=\dfrac{2}{3}\)
2 tg OMI và tg SMI có chung IM nên
\(\dfrac{S_{OMI}}{S_{SMI}}=\)đường cao từ O->AM/đường cao từ S->AM\(=\dfrac{2}{3}\)
2tg OMI và tg SMI có chung đường cao từ M->SO nên
\(\dfrac{S_{OMI}}{S_{SMI}}=\dfrac{OI}{SI}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{OI}{2}=\dfrac{SI}{3}=\dfrac{OI+SI}{2+3}=\dfrac{SO}{5}\Rightarrow\dfrac{SI}{SO}=\dfrac{3}{5}\)
c/
Gọi P là trung điểm của SA, Xét tg SAD có
PA=PS; ND=NS (gt) => PN là đường trung bình của tg SAD
=> PN//AD và \(PN=\dfrac{1}{2}AD\)
Ta có
PN//AD; AD//BC => PN//BC
\(AD=2BC\Rightarrow BC=\dfrac{1}{2}AD\)
=> PN//BC và \(PN=BC=\dfrac{1}{2}AD\)
=> BCNP là hbh (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> CN//BP (cạnh đối hbh) mà \(BP\in\left(SAB\right)\) => CN//(SAB)
a.
Qua S kẻ đường thẳng d song song AD và BC
Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\\S\in d\\d||AD\end{matrix}\right.\) \(\Rightarrow d\in\left(SAD\right)\)
\(\left\{{}\begin{matrix}S\in\left(SBC\right)\\S\in d\\d||BC\end{matrix}\right.\) \(\Rightarrow d\in\left(SBC\right)\)
\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)
b.
Trong mp (SAC), nối AM cắt SO tại I
\(\left\{{}\begin{matrix}O\in BD\in\left(SBD\right)\\S\in\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow SO\in\left(SBD\right)\)
\(I\in SO\Rightarrow I\in\left(SBD\right)\)
\(\Rightarrow I=AM\cap\left(SBD\right)\)
Do AD song song BC, áp dụng định lý Thales:
\(\dfrac{OA}{OC}=\dfrac{AD}{BC}=2\) \(\Rightarrow OA=2OC=2\left(AC-OA\right)\Rightarrow\dfrac{OA}{AC}=\dfrac{2}{3}\)
Áp dụng định lý Menelaus:
\(\dfrac{OA}{AC}.\dfrac{CM}{MS}.\dfrac{SI}{IO}=1\Leftrightarrow\dfrac{2}{3}.1.\dfrac{SI}{IO}=1\)
\(\Rightarrow2SI=3IO=3\left(SO-SI\right)\)
\(\Rightarrow5SI=3SO\Rightarrow\dfrac{SO}{SI}=\dfrac{3}{5}\)
a/
Trong mp(SAC) Gọi K là giao của EF và AC
\(K\in EF\)
\(K\in AC;AC\in\left(ABC\right)\Rightarrow K\in\left(ABC\right)\)
=> K là giao của EF với (ABC)
b/
Trong mp (SBC), Gọi M là giao của SI với BF
\(M\in SI;SI\in\left(SAI\right)\Rightarrow M\in\left(SAI\right)\)
\(M\in BF;BF\in\left(ABF\right)\Rightarrow M\in\left(ABF\right)\)
\(A\in\left(SAI\right);A\in\left(ABF\right)\)
=> AM là giao tuyến giữa (SAI) và (ABF)
c/
\(I\in\left(SAI\right)\)
\(I\in BC;BC\in\left(BCE\right)\Rightarrow I\in\left(BCE\right)\)
\(E\in SA;SA\in\left(SAI\right)\Rightarrow E\in\left(SAI\right)\)
\(E\in\left(BCE\right)\)
=> IE là giao tuyến giữa (SAI) và (BCE)
Cụ thể :
+ Năm 2000 dân số dưới 15 tuổi chiếm 36,4% đến năm 2020 con số này đã giảm còn 28,7%.
+Nhóm dân số từ 15 đến 64 tuổi năm 2000 là 59,1 đến năm 2020laf 65,6%
+ Dân số từ 65 tuổi trở lên năm 2000 là 4,5% , năm 2020 là 5,7 %