
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 3. a) cos (x - 1) = ⇔ x - 1 = ±arccos
+ k2π
⇔ x = 1 ±arccos + k2π , (k ∈ Z).
b) cos 3x = cos 120 ⇔ 3x = ±120 + k3600 ⇔ x = ±40 + k1200 , (k ∈ Z).
c) Vì = cos
nên
⇔ cos(
) = cos
⇔
= ±
+ k2π ⇔
d) Sử dụng công thức hạ bậc (suy ra trực tiếp từ công thức nhan đôi) ta có
⇔
⇔
⇔ ⇔

a) Ta có
Do đó, y'<0 <=> <=> x≠1 và x2 -2x -3 <0
<=> x≠ 1 và -1<x<3 <=> x∈ (-1;1) ∪ (1;3).
b) Ta có
Do đó, y’≥0 <=> <=> x≠ -1 và x2 +2x -3 ≥ 0 <=> x≠ -1 và x ≥ 1 hoặc x ≤ -3 <=> x ≥ 1 hoặc x ≤ -3
<=> x∈ (-∞;-3] ∪ [1;+∞).
c).Ta có
Do đó, y’>0 <=>
<=> -2x2 +2x +9>0 <=> 2x2 -2x -9 <0 <=>
<=> x∈
vì x2 +x +4 = (x+1/2)2 + 15/4 >0, với ∀ x ∈ R.
TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) C = (-4.78, -5.6) C = (-4.78, -5.6) C = (-4.78, -5.6) D = (7.82, -7.32) D = (7.82, -7.32) D = (7.82, -7.32) E = (-4.82, -6.92) E = (-4.82, -6.92) E = (-4.82, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) G = (-7.14, -8.07) G = (-7.14, -8.07) G = (-7.14, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) I = (-1.74, -9.56) I = (-1.74, -9.56) I = (-1.74, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) K = (-7.17, -8.04) K = (-7.17, -8.04) K = (-7.17, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) M = (-7.24, -7.99) M = (-7.24, -7.99) M = (-7.24, -7.99) N = (12.23, -7.99) N = (12.23, -7.99) N = (12.23, -7.99)

3) 2sin^2 x - 3sinx + 1 = 0
Đặt t = sin x
(*) <=> 2t^2 - 3t + 1 = 0
<=> t = 1 (nhận) or t = 1/2 (nhận)
.Vs t = 1 => sinx = 1
<=> x = π/2 + k2π (k thuộc Z) (nhận)
.Vs t = 1/2 => sinx = 1/2
<=> sinx = sin π/6
<=> x = π/6 + k2π (k thuộc Z) (nhận)
Vậy ...
2) cos^2 x + cosx = 0
Đặt t = cosx
(*) <=> t^2 + t =0 <=> t = 0 (n) or t = -1 (n)
. Vs t = 0 => cosx = 0 <=> x = π/2 + kπ (loại)
.Vs t = -1 => cosx = -1 <=> x = π + k2π (nhận)
Vậy ...
1) (sin3x)/cosx + 1 = 0
ĐK: cosx + 1 ≠ 0 <=> cosx ≠ -1 <=> x ≠ π + k2π
<=> sin3x = 0
<=> 3x = kπ
<=> x = 1/3 kπ (k thuộc Z) (n)
Vậy ...
`16x^4-16x^2+1=0`
`<=>16(x^2)^2-16x^2+1=0`
Đặt: `t=x^2` với `t>=0`
Ta được phương trình: `16t^2-16t+1=0`
`\Delta=(-16)^2-4*16*1=192>0`
Có hai nghiệm phân biệt:
`t_1=(-(-16)+\sqrt{192})/(2*16)=(2+\sqrt{3})/4(tm)`
`t_2=(-(-16)+\sqrt{192})/(2*16)=(2-\sqrt{3})/4(tm)`
Với `t=(2+\sqrt{3})/4=(4+2\sqrt{3})/8`
Suy ra: `x^2=(4+2\sqrt{3})/8`
`<=>x=+-\sqrt{(4+2\sqrt{3})/8}`
`<=>x=+-\sqrt{(\sqrt{3}+1)^2/8}`
`<=>x=+-(\sqrt{3}+1)/(2\sqrt{2})`
Với `t=(2-\sqrt{3})/4=(4-2\sqrt{3})/8`
Suy ra: `x^2=(4-2\sqrt{3})/8`
`<=>x=+-\sqrt{(4-2\sqrt{3})/8}`
`<=>x=+-\sqrt{(\sqrt{3}-1)^2/8}`
`<=>x=+-(\sqrt{3}-1)/(2\sqrt{2})`
Vậy: `...`