cô oi,sao ở chỗ câu hỏi 4 lại cho rằng ''gia đình thương yêu ''ở nhóm 'kết nối em với cộng đồng' là sai mà sau khi hoàn thành song câu hỏi thì ở video nó lại cho rằng ''gia đình thương yêu ''ở nhóm 'kết nối em với cộng đồng' là đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét tứ giác AEHF có \(\hat{AEH}+\hat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp đường tròn đường kính AH
=>A,E,H,F cùng thuộc (Q)
Xét tứ giác BFHD có \(\hat{BFH}+\hat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CDHE có \(\hat{CDH}+\hat{CEH}=90^0+90^0=180^0\)
nên CDHE là tứ giác nội tiếp
Ta có: \(\hat{FEH}=\hat{FAH}\) (AEHF nội tiếp)
\(\hat{DEH}=\hat{DCH}\) (DCEH nội tiếp)
mà \(\hat{FAH}=\hat{DCH}\left(=90^0-\hat{ABC}\right)\)
nên \(\hat{FEH}=\hat{DEH}\)
=>EH là phân giác của góc FED
Ta có: \(\hat{FDH}=\hat{FBH}\) (BFHD nội tiếp)
\(\hat{EDH}=\hat{ECH}\) (HECD nội tiếp)
mà \(\hat{FBH}=\hat{ECH}\left(=90^0-\hat{BAC}\right)\)
nên \(\hat{FDH}=\hat{EDH}\)
=>DH là phân giác của góc FDE
Xét ΔDFE có
DH,EH là các đường phân giác
DH cắt EH tại H
Do đó: H là tâm đường tròn nội tiếp ΔDEF
=>H cách đều ba cạnh của ΔDEF
b: Xét ΔQAF có \(\hat{FQH}\) là góc ngoài tại đỉnh Q
nên \(\hat{FQH}=\hat{QFA}+\hat{QAF}=2\cdot\hat{QAF}\)
Xét ΔQAE có \(\hat{HQE}\) là góc ngoài tại đỉnh Q
nên \(\hat{HQE}=\hat{QAE}+\hat{QEA}=2\cdot\hat{QAE}\)
\(\hat{FQE}=\hat{FQH}+\hat{EQH}\)
\(=2\left(\hat{QAF}+\hat{QAE}\right)=2\cdot\hat{EAF}=2\cdot\hat{BAC}\)
\(\hat{FDE}=\hat{FDH}+\hat{EDH}=2\cdot\hat{FDH}=2\cdot\hat{ABE}\)
\(\hat{FQE}+\hat{FDE}=2\left(\hat{BAC}+\hat{ABE}\right)=2\cdot90^0=180^0\)
=>FQED nội tiếp
c: M đối xứng H qua BC
=>BC⊥HM tại trung điểm của HM
mà BC⊥HD tại D
và HM,HD có điểm chung là H
nên H,D,M thẳng hàng
=>HM⊥BC tại D và D là trung điểm của HM
Xét ΔBHM có
BD là đường cao
BD là đường trung tuyến
Do đó: ΔBHM cân tại B
Xét ΔCHM có
CD là đường cao
CD là đường trung tuyến
Do đó: ΔCHM cân tại C
Xét ΔBHC và ΔBMC có
BH=BM
CH=CM
BC chung
Do đó: ΔBHC=ΔBMC
=>\(\hat{BHC}=\hat{BMC}\)
mà \(\hat{BHC}=\hat{FHE}\) (hai góc đối đỉnh)
nên \(\hat{BMC}=\hat{FHE}\)
mà \(\hat{FHE}+\hat{FAE}=180^0\) (AEHF nội tiếp)
nên \(\hat{BMC}+\hat{BAC}=180^0\)
=>ABMC là tứ giác nội tiếp
=>M thuộc (O)

TH: a, b là số âm
a > b => -3a > -3b
=> 2 - 3a > 2 - 3b
TH: a, b là số nguyên
a > b => -3a < -3b
=> 2 - 3a < 2 - 3b
.... có thể có nhiều trường hợp xảy ra nữa ví dụ như a dương, b âm nhưng |b| > a thì khi đó 2 - 3a < 2 - 3b.

đây nhé:
Trần Hưng Đạo (1228 – 1300) là vị anh hùng dân tộc kiệt xuất, đã ba lần lãnh đạo quân dân Đại Việt đánh bại quân Nguyên - Mông xâm lược. Ông nổi tiếng với tác phẩm Hịch tướng sĩ khích lệ tinh thần quân đội và chiến thắng Bạch Đằng năm 1288 lẫy lừng. Trần Hưng Đạo được nhân dân tôn kính, xem như vị thánh bảo quốc hộ dân.

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Olm chào em, em cho cô xin link bài giảng để cô check lại, em nhé. cô cảm ơn em!