Cho D=5+52+53+54+...+5200
CMR:D là hợp số.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Ta có:
\(C=5+5^2+5^3+...+5^{2016}\)
\(C=5\cdot\left(1+5+5^2+...+5^{2015}\right)\)
\(\dfrac{C}{5}=1+5+5^2+...+5^{2015}\)
Mà: \(1+5+5^2+...+5^{2015}\) là 1 số nguyên nên
\(\dfrac{C}{5}\) là số nguyên: \(\Rightarrow C\) ⋮ 5
Nên C là hợp số
1 số mà mũ bao nhiêu lần đi nữa thì được 1 số sẽ chia hết cho số ban đầu
\(Vì\) \(5;5^2;5^3;5^4;5^5;...5^{2016}\) đều chia hết cho 5
Các số hạng trong 1 tổng đều chia hết cho 1 số thì tổng đó chia hết cho số đã cho
\(\Rightarrow\)\(5+5^2+5^3+5^4+...+5^{2016}⋮5\) và là hợp số
Vậy C là hợp số
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰¹²
= (5 + 5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷ + 5⁸) + ... + (5²⁰⁰⁹ + 5²⁰¹⁰ + 5²⁰¹¹ + 5²⁰¹²)
= 780 + 5⁴.(5 + 5² + 5³ + 5⁴) + ... + 5²⁰⁰⁸.(5 + 5² + 5³ + 5⁴)
= 780 + 5⁴.780 + ... + 5²⁰⁰⁸.780
= 65.12 + 5⁴.65.12 + ... + 5²⁰⁰⁸.65.12
= 65.12(1 + 5⁴ + ... + 5²⁰⁰⁸) ⋮ 65
Vậy S ⋮ 65
Bài 1:
$B=1+3+3^2+3^3+...+3^{100}$
$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$
$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$
$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$
$\Rightarrow B$ chia 4 dư 1.
Bài 2:
$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$
$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$
$\Rightarrow C+5C=5-5^{2025}$
$6C=5-5^{2025}$
$C=\frac{5-5^{2025}}{6}$
\(S=5+5^2+5^3+5^4+...+5^{2016}\\ =\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)...+\left(5^{2013}+5^{2014}+5^{2015}+5^{2016}\right)\\ =\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2012}\left(5+5^2+5^3+5^4\right)\\ =780+5^4\cdot780+...+5^{2012}\cdot780\\ =780\cdot\left(5^4+...+5^{2012}\right)=65\cdot12\cdot\left(5^4+...+5^{2012}\right)⋮65\)vậy S chia hết cho 65
Ta có A = 5 + 52 + 53 + ... + 52021
5A = 52 + 53 + 54 + ... + 52022
5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )
4A = 52022 - 5
A = \(\dfrac{5^{2022}-5}{4}\)
Tìm chữ số tận cùng của kết quả mỗi phép tính sau:
a. 4915
b. 5410
c. 1120+11921+200022
giúp mình nhanh với mai mình đi học rùi.
có j mình k cho