Tìm GTNN của P=/x/+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
a, A=|x+2|+5
Vì |x+2| \(\ge\) 0 \(\forall\) x
=> |x+2|+5\(\ge5\forall x\)
Dấu = xảy ra <=> x+2=0
<=> x=-2
Vậy.....
b, B=|x-100|+|y+200|-7
Vì |x-100| \(\ge0\forall x\)
|y+200| \(\ge0\forall y\)
=> \(\left|x-100\right|+\left|y+200\right|-7\ge-7\forall x,y\)
Dấu = xảy ra <=> \(\hept{\begin{cases}x-100=0\\y+200=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
vậy.........
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) , dấu đẳng thức xảy ra khi a,b cùng dấu được :
\(\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\) (1)
Mặt khác : \(\left|x-7\right|\ge0\) (2)
Từ (1) và (2) suy ra \(A\ge8\)
Do đó MIN A = 8 \(\Leftrightarrow\begin{cases}x-1\ge0\\9-x\ge0\\x=7\end{cases}\) <=> x = 7
Bạn tham khảo bài tìm GTNN này nha!
A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2
minA = 2
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7
B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4
B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4
minB = -1/4
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4
C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥
≥ |x² + x + 1 + 12 - x² - x| = |13| = 13
minC = 13
đạt khi (x² + x +1) và (12 - x² - x) cùng dấu
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=>
{x² + x + 1 ≥ 0
{x² + x -12 ≤ 0
<=>
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3
tóm lại:
minC = 13 đạt khi -4 ≤ x ≤ 3
Ta có A= /x+7/+/x-2014/ = /x+7/+/2014-x/ >= /x+7+2014-x/ =2021
Dấu "=" xảy ra <=> (x+7)(2014-x) >=0 <=> x=< 2014 hoặc x>= -7
Min A=2021 <=> x=< 2014 và x>= -7 <=> -7=< x =< 2014
ta có: \(|x|\ge0,\forall x.\)
\(\Rightarrow|x|+7\ge0,\forall x\)
dấu bằng xảy ra khi/x/=0 <=> x=0
vậy min p =7 khi x=0