Cho a,b,c > thỏa mãn a+b+c = \(a^2+b^2+c^2\)= \(a^3+b^3+c^3\).Tính \(a^5+b^5+c^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(A=\frac{b+c+5}{a+1}+\frac{c+a+4}{b+2}+\frac{a+b+3}{c+3}\)
\(=\frac{12-\left(a+1\right)}{a+1}+\frac{12-\left(b+2\right)}{b+2}+\frac{12-\left(c+3\right)}{c+3}\)
\(=\frac{12}{a+1}+\frac{12}{b+2}+\frac{12}{c+3}-3\ge\frac{108}{a+b+c+1+2+3}-3=\frac{108}{12}-3=6\)(Q.E.D)
dấu = xảy ra khi a+1=b+2=c+3<=>a=3;b=2;c=1
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-2ab-2bc-2ca\right)\)
Mà a+b+c=0 nên \(a^3+b^3+c^3=3abc\)
Ta có \(\frac{a^2+b^2+c^2}{2}.\frac{a^3+b^3+c^3}{3}=\frac{(a^2+b^2+c^2)3abc}{6}=\frac{(a^2+b^2+c^2)abc}{2}\)(1)
Ta có \(\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)=\left(a^2+b^2+c^2\right)3abc\)(2)
Bạn nhân vế trái của (2) ra rồi nhóm lại thì đc nhứ sau
\(=>2\left(a^5+b^5+c^5\right)-2abc\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)3abc\)
\(=>2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
\(=>\frac{a^5+b^5+c^5}{5}=\frac{abc(a^2+b^2+c^2)}{2}\)(3)
Từ (1)và (3)=> đpcm
Học tốt nha bạn !
> 0 nhé
>0 nha