Cho a, b ,c la 3 canh cua tam giac co chu vi bang 2
Cm a^2+b^2+c^2+2abc < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng bất đẳng thức Schur cho $a,b,c$ là ba cạnh của tam giác:
\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(1-2a)(2-2b)(1-2c)\)
\(\Leftrightarrow 9abc\geq 4(ab+bc+ac)-1\)
Do đó: \(A=a^2+b^2+c^2+4abc\geq a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}-\frac{4}{9}\)
Ta có:
\(a^2+b^2+c^2+2(ab+bc+ac)=(a+b+c)^2=1\)
Áp dụng BĐT AM-GM: \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\Rightarrow \frac{-2(ab+bc+ac)}{9}\geq \frac{-2}{27}\)
Cộng theo vế: \(a^2+b^2+c^2+\frac{16(ab+bc+ac)}{9}\geq \frac{29}{27}\Rightarrow A\geq \frac{29}{27}-\frac{4}{9}=\frac{13}{27}\)
Do đó ta có đpcm
Dấu $=$ xảy ra khi $3a=3b=3c=1$ hay tam giác $ABC$ là tam giác đều.
Theo đề ra ta có : a+b+c=2
Mà theo bđt tam giác thì
a < b + c
=> a + a < a + b + c
=> 2a < 2
=> a < 1 => a-1<0
Bạn làm tương tự thì có b<1 => b-1 <0 và c<1 => c-1<0
Nhân vế theo vế :
(1 - a)(1 - b)(1 - c) > 0
=> (1 – b – a + ab)(1 – c) > 0
=> 1 – c – b + bc – a + ac + ab – abc > 0
=> 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
=> 2abc < -2 + 2ab + 2bc + 2ca
=> a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
=> a² + b² + c² + 2abc < (a + b + c)² - 2
=> a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
=> a² + b² + c² + 2abc < 2 (đpcm