K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

\(a)\)\(\left(x-y\right)\left(x+y\right)\)

\(=\)\(x\left(x-y\right)+y\left(x-y\right)\)

\(=\)\(x^2-xy+xy-y^2\)

\(=\)\(x^2-y^2\)

\(b)\)\(\left(x+y\right)^2\)

\(=\)\(\left(x+y\right)\left(x+y\right)\)

\(=\)\(x\left(x+y\right)+y\left(x+y\right)\)

\(=\)\(x^2+xy+xy+y^2\)

\(=\)\(x^2+2xy+y^2\)

Hai công thức này lớp 8 bạn sẽ học ^^

14 tháng 2 2018

a.(x-y).(x+y)=x.(x+y)-y.(x+y)=x2+xy-(yx+y2)

                                            =x2+xy-yx-y2=x2+0-y2=x2-y2(vì xy=yx mà)

vậy...

b.(x+y)2=(x+y).(x+y)=x.(x+y)+y.(x+y)

                                =x2+xy+yx+y2=x2+2xy+y2

vậy.....

21 tháng 9 2021

a) 3(x-y) - (x-y)^2

 =(x-y)(3-x+y)

21 tháng 9 2021

b) =(x+y)^2 - (2xy)^2

= (x+y-2xy)(x+y+2xy)

21 tháng 1 2022

B.(x-y)2

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

22 tháng 10 2023

b: (x-y)(x^2-2x+y)

\(=x^3-2x^2+xy-x^2y+2xy-y^2\)

\(=x^3-2x^2-x^2y+3xy-y^2\)

c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)

\(=x^2y^2-xy\)

d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)

\(=6x^2y-3xz-5x^2y+10y+3xz\)

\(=x^2y+10y\)

4 tháng 8 2023

\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)

4 tháng 8 2023

\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)

1 tháng 4 2022

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

x^2+4y^2+z^2-2x-6z+8y+15

=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9

=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1

=(x-1)^2+4(y+1)^2+(z-3^)2+1

Ta thấy:(x−1)^2≥0

              4(y+1)^2≥0

             (z−3)^ 2≥0

{(x−1)^24(y+1)^2(z−3)^2≥0

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0

Khét đấy hot girl !

17 tháng 12 2022

a: x và y tỉ lệ thuận

nên y1/x1=y2/x2

=>y1/1=y2/-3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:

\(\dfrac{y1}{1}=\dfrac{y2}{-3}=\dfrac{y1-y2}{1-\left(-3\right)}=\dfrac{50}{4}=\dfrac{25}{2}\)

=>y1=25/2; y2=-75/2

b: k=y1/x1=25/2:6=25/12

=>y=25/12x

25 tháng 10 2021

a: \(\dfrac{x^2+2xy+y^2}{x+y}=x+y\)

b: \(\dfrac{64x^3+1}{4x+1}=16x^2-4x+1\)