cho tam giác ABC. Trên cạnh AB và AC lấy các điểm M và N.Từ M vẽ một đường thẳng song song với AC cắt BN tại D.Từ N vẽ một đường thăng song songvới AB ắt M tại E Chứng minh DE//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác APMN có
NM//AP
MP//AN
Do đó: APMN là hình bình hành
mà \(\widehat{NAP}=90^0\)
nên APMN là hình chữ nhật
a) Chứng minh BDEF là hình bình hành Þ ED= BF = AE Þ DAED cân ở E.
b) Ta có B A D ^ = D A C ^ (vì cùng bằng A D E ^ ) Þ AD là phân giác Â
+) Kẻ NF // AB
=> góc NMF = MFB (SLT); góc NFM = FMB (SLT) mà cạnh chung MF
=> Tam giác MNF và tam giác FBM (g- c- g)
=> MN = BF và BM = NF => BM = NF = AD
+) Chứng minh được: tam giác ADE = NFC (g- c- g) => DE = FC
=> DE + MN = FC + BF = BC = không đổi
Vậy...
Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m
Chiều dài là : 15 + 22,5 = 37,5 m
Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m
Diện tích là : 37,5 x 22,5 = 843,75 m2