Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M E D
Xét tứ giác AEMD có : MD // AE (vì MD // AB) và ME // AD (vì ME // AC)
=> AEMD là hình bình hành. Theo tính chất của hình bình hánh ta suy ra được ME = AD và MD = AE (đpcm).
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a: Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=3/5
=>DE=6cm
b: Xét ΔADE và ΔCGE có
góc AED=góc CEG
góc EAD=góc ECG
=>ΔADE đồng dạng với ΔCGE
c: Xét tứ giác DBCG có
DG//BC
DB//CG
=>DBCG là hình bình hành
=>DB=CG
a: Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)
nên AEMF là hình chữ nhật
b: Xét ΔABC có
E là trung điểm của BA
EM//AC
Do đó: M là trung điểm của BC
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Xét ΔABC có
E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình
=>EF//BC
=>EF//MH
ΔHAC vuông tại H
mà HF là đường trung tuyến
nên \(HF=AF\)
mà AF=ME(AEMF là hình chữ nhật)
nên ME=FH
Xét tứ giác MHEF có MH//EF
nên MHEFlà hình thang
mà ME=FH
nên MHEF là hình thang cân
em moi hoc lop 6