Tìm x,y,z biết: (x-y^2 + z)^2 + (y-2)^2 +(z+3)^2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
<=> \(\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}\left(x-2^2-3\right)^2=0\\y=2\\z=-3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Câu 4 tương tự.
Mỗi hạng tử của đa thức đều không âm, do đó tổng của chúng không âm. Tổng của chúng bằng 0, do đó mỗi hạng tử bằng 0.
\(\Rightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y^2-z=7\\y=2\\z=-3\end{cases}}}\)
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
\(\left|x-\frac{1}{2}\right|\left|y+\frac{1}{3}\right|\left|z-2\right|=0\)
Vì \(\left|x-\frac{1}{2}\right|;\left|y+\frac{1}{3}\right|;\left|z-2\right|\)luôn lớn hon hoặc bằng 0
=> x-1/2=0 ; y+1/3=0 ; z-2=0
=> x=1/2 ; y=-1/3 ; z=2
\(\Rightarrow\)x-y^2+z=0
y-2=0
z+3=0
\(\Rightarrow\)\(\hept{\begin{cases}x-4-3=0\\y=2\\z=-3\end{cases}}\)x=7