Tìm x nguyên hỏa mãn: /x+1/ + /x-2/ + /x+7/= 5x -10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có |x+1|\(\ge\)0
|x-2|\(\ge\)0
|x+7|\(\ge\)0
\(\Rightarrow5x-10\ge0\)
\(\Rightarrow x+1+x-2+x+7=5x-10\)
3x+(1-2+7)=5x-10
3x+6=5x-10
6+10=5x-3x
16=2x
x=8
Ta có: \(\hept{\begin{cases}GTTDx+1\ge0\\GTTDx-2\ge0\\GTTDx+7\ge0\end{cases}}\)với mọi x \(\Rightarrow\)/x+1/+/x-2/+/x+7/ \(\ge\)0 với mọi x hay 5x-10\(\ge\)0 \(\Rightarrow5x\ge10\Rightarrow x\ge2\)
Với \(x\ge2\), ta có: /x+1/+/x-2/+/x+7/=x+1+x-2+x+7=5x-10 hay 3x+6=5x-10 \(\Rightarrow\)3x+16=5x \(\Rightarrow\)2x=16 \(\Rightarrow\)x=8
Vậy x=8
=> x+1+x-2+x+7=5.x-10
3x+(1-2+7)=5.x-10
3x+6=5x-10
3x-5x=-10-6
-2x=-16
= x= 8
a) \(\left(x+y+1\right)^3=x^3+y^3+7\)
\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)
\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.
Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).
- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)
Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).
- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).
Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).
Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)
b) \(y^2+2xy-8x^2-5x=2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)
\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)
\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)
\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)
\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)
\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.
Lập bảng:
6y-12x-5 | 1 | 47 | -1 | -47 |
24x+6y+5 | 47 | 1 | -47 | -1 |
x | 1 | \(\dfrac{-14}{9}\left(l\right)\) | \(\dfrac{-14}{9}\left(l\right)\) | 1 |
y | 3 | \(\dfrac{50}{9}\left(l\right)\) | \(-\dfrac{22}{9}\left(l\right)\) | -5 |
Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
|x-10|+|x-11|+|x-12|+|x-13|=4
=>|x-10|+|x-13|+|x-11|+|x-12|=4
=>|x-10|+|13-x|+|x-11|+|12-x|=4
Ta có: |x-10|+|x-13|+|x-11|+|x-12|>=3+1=4(Bất đẳng thức giá trị tuyệt đối)
DBXRK 11<=x<=12=>x=11 hoặc x=12
Vậy x=11 hoặc x=12
B3 a) x=4 b) x=-7 c) x=5 d) x=4
B2 a) -3+ -2+ -1+0+1+2+3+4=4
b) -6+ -5+ -4+ -3+ -2+ -1+0+1+2+3+4=-11
c) -18+-17+-16+-15+-14+-13+-12+-11+-10+-9+-8+-7+-6+-5+-4+3+-2+-1+0+1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19=19
Với mọi x thì /x+1/>=0
/x-2/>=0
/x+7/>=0
\(\Rightarrow\)5x-10>=0
Nên x>=2
\(\Rightarrow\)x+1+x-2+x+7=3x+6=5x-10
\(\Rightarrow\)2x=16
\(\Rightarrow\)x=8
bạn học lớp mấy để mình gửi bài giải phù hợp