Cho số tự nhiên A=deba . CHỨNG MINH RẰNG :
A chia hết cho 8 <=> ( a+2b+4c) chia hết cho 8
Ai Gỉai được bài này mình like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
a)A = dcba = 1000d + 100c + 10b + a
= (1000d + 100c + 8b) + (2b + a)
= 4(250d + 25c + 2b) + (2b + a)
(CM chiều xuôi)
Ta có A chia hết cho 4
Mà 4(250d + 25c + 2b) chia hết cho 4
=> 2b + a chia hết cho 4 (đpcm)
(CM chiều ngược)
Ta có 2b + a chia hết cho 4
Mà 4(250d + 25c + 2b) chia hết hết cho 4
=> A chia hết cho 4 (đpcm)
Vậy A chia hết cho 4 <=> a + 2b chia hết cho 4
2) Xét tổng (11a+2b)+(a+34b) =12a +36b
=> a+34b=(12a+36b)-(11a+2b)
Mà 12a+36b chia hết cho 12 ; 11a+2b chia hết cho 12
=>(12a+36b)-(11a+2b) chia hết cho 12
=>a+34b chia hết cho 12