tìm các số nguyên dương a va b biết \(2^a+2^b=2^{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì a∈Z+a∈Z+
⇒5b=a3+3a2+5>a+3=5c⇒5b=a3+3a2+5>a+3=5c
⇒5b>5c⇒b>c⇒5b>5c⇒b>c
⇒5b⋮5c⇒5b⋮5c
⇒a3+3a2+5⋮a+3⇒a3+3a2+5⋮a+3
⇒a2(a+3)+5⋮a+3⇒a2(a+3)+5⋮a+3
Mà a2(a+3)⋮a+3a2(a+3)⋮a+3
⇒5⋮a+3⇒5⋮a+3
⇒a+3∈Ư(5)⇒a+3∈Ư(5)
⇒a+3∈{±1;±5}(1)⇒a+3∈{±1;±5}(1)
Do a∈Z+⇒a+3≥4(2)a∈Z+⇒a+3≥4(2)
Từ (1)(1) và (2)(2)
⇒a+3=5⇒a+3=5
⇒a=5−3⇒a=5−3
⇒a=2⇒a=2(∗)(∗)
Thay (∗)(∗) vào biểu thức ta có:
23+3.22+5=5b⇔b=223+3.22+5=5b⇔b=2
2+3=5c⇔c=12+3=5c⇔c=1
Vậy: ⎧⎪⎨⎪⎩a=2b=2c=1
2a+b=2a.2b=2a+2b=2a(1+2b-a)
=>2b=1+2b-a
xét b-a=0=>2b=1+1=2=21
=>b=1;a=1
vậy a=1;b=1