K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

Ta thấy x = 0 ko phải là nghiệm của pt => x khác 0

Chia cả 2 vế pt cho x^2 khác 0 ta được :

x^2-3x-6+3/x+1/x^2 = 0

<=> (x^2+1/x^2)-3.(x-1/x)-6 = 0

Đặt x-1/x = a => x^2+1/x^2 = a^2+2

pt trở thành : 

a^2+2-3a-6 = 0

<=> a^2-3a-4 = 0

<=> (a^2+a)-(4a+4) = 0

<=> (a+1).(a-4) = 0

<=> a=-1 hoặc a=4

<=> x-1/x = -1 hoặc x-1/x = 4

Đến đó nhân cả 2 vế với x mà tìm x nha

Tk mk nha

6 tháng 2 2018

x = 0 không là nghiệm của pt.

\(x\ne0\)

\(PT\Leftrightarrow x^2+\frac{1}{x^2}-3x+\frac{3}{x}+6=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2-3\left(x-\frac{1}{x}\right)+8=0\)<=> PT vô nghiệm

22 tháng 8 2019

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)

\(\Leftrightarrow-x^2-6x+3x+18-18=0\)

\(\Leftrightarrow-x\left(x+3\right)=0\)

=>x=0 hoặc x=-3

b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)

c: =>x(3x-5)=0

=>x=0 hoặc x=5/3

d: =>(x-2)(x+2)=0

=>x=2 hoặc x=-2

14 tháng 6 2019

2x4 ,4 là mũ hay số vậy

16 tháng 6 2019

thôi không cần lm nx học xong rồi

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

6 tháng 7 2019

3x3 – 6x2 + 3x = 3x(x2 - 2x + 1) = 3x(x - 1)2

1 tháng 3 2023

`2x^3 +6x^2 =x^2 +3x`

`<=> 2x^3 +6x^2 -x^2 -3x=0`

`<=> 2x^3 +5x^2 -3x=0`

`<=> x(2x^2 +5x-3)=0`

`<=> x(2x^2 +6x-x-3)=0`

`<=> x[2x(x+3)-(x+3)]=0`

`<=> x(2x-1)(x+3)=0`

\(< =>\left[{}\begin{matrix}x=0\\2x-1=0\\x+3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

b)

`(2+x)^2 -(2x-5)^2=0`

`<=> (2+x-2x+5)(2+x+2x-5)=0`

`<=> (-x+7)(3x-3)=0`

\(< =>\left[{}\begin{matrix}-x+7=0\\3x-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

1 tháng 3 2023

`a) 2x^3 + 6x^2 = x^2 + 3x`

`=> 2x^3 + 6x^2 - x^2 - 3x = 0`

`=> 2x^3 + 5x^2 - 3x = 0`

`=> x(2x^2 + 5x - 3) = 0`

`=> x (2x^2 + 6x - x - 3) = 0`

`=> x [(2x^2 + 6x) - (x+3)] = 0`

`=> x [2x(x+3) - (x+3)] = 0`

`=> x (2x - 1)(x+3) = 0`

`=> x = 0` hoặc `2x - 1 = 0` hoặc `x + 3 = 0`

`=> x = 0` hoặc `x = 1/2` hoặc `x = -3`

`b) (2+x)^2 - (2x-5)^2 = 0`

`=> (2+x+2x-5)(2+x-2x+5) = 0`

`=> (3x - 3)(7-x) = 0`

`=> 3x - 3 = 0` hoặc `7 - x = 0`

`=> x = 1` hoặc `x = 7`

 

NV
6 tháng 8 2021

a.

ĐKXĐ: \(x\le\dfrac{2}{3}\)

\(3x^2-7x+2-\left(1-\sqrt{2-3x}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)-\dfrac{3x-1}{1+\sqrt{2-3x}}=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-2-\dfrac{1}{1+\sqrt{2x-3}}\right)=0\) (1)

Do \(x\le\dfrac{2}{3}\Rightarrow x-2< 0\Rightarrow x-2-\dfrac{1}{1+\sqrt{2-3x}}< 0;\forall x\in TXĐ\)

Nên (1) tương đương:

\(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(18x^2+6x+3=9x\sqrt{6x+3}\)

Đặt \(\sqrt{6x+3}=y\ge0\) ta được:

\(18x^2+y^2=9xy\)

\(\Leftrightarrow18x^2-9xy+y^2=0\)

\(\Leftrightarrow\left(6x-y\right)\left(3x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=3x\\y=6x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+3}=3x\\\sqrt{6x+3}=6x\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}6x+3=9x^2\\6x+3=36x^2\end{matrix}\right.\) (\(x\ge0\))

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{13}}{12}\end{matrix}\right.\)

19 tháng 1 2022

Ta có : x4+3x3+4x2+3x+1=0
⇔ ( x4 + x3 ) + ( 2x3 + 2x2 ) + ( 2x2 + 2x ) + ( x + 1 ) = 0

⇔ x3 ( x + 1 ) + 2x2 ( x + 1 ) + 2x ( x+1 ) + ( x + 1 ) =0

⇔  ( x + 1 ) ( x3 + 2x2 + 2x + 1 ) = 0

⇔ ( x + 1 ) [ ( x3 + 1 ) + ( 2x2 + 2x ) ] = 0

⇔ ( x + 1 ) [ (x + 1 ) ( x2 - x +1 ) + 2x ( x + 1 ) ] =0

⇔ ( x +1 ) ( x + 1 ) ( x2 + x +1 ) =0
⇒ \(\left[{}\begin{matrix}x+1=0\\x^{2^{ }}+x+1=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(VoLy\right)\end{matrix}\right.\)

Vậy x = -1

19 tháng 1 2022

x4+3x3+4x2+3x+1=0

⇔(x4+2x3+x2)+(x3+2x2+1)+(x2+2x+1)=0

⇔x2(x2+2x+1)+x(x2​+2x+1)+(x2​+2x+1)=0

⇔x2(x+1)2+x(x+1)2+(x+1)2=0

⇔(x+1)2(x2+x+1)=0

Vì x2+x+1=x2+x+\(\dfrac{1}{4}\)+\(\dfrac{3}{4}\)=(x+\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)>0 nên phương trình đã cho tương đương:

(x+1)2=0 ⇔(x+1)(x+1)=0 ⇔x=-1.

 

 

 

 

9 tháng 3 2023

\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)

\(\Leftrightarrow6x^2-6x^2-5x-2x+9x=-3\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

\(b,\left(3x-1\right)\left(4x+3\right)=2\left(3x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(4x+3\right)-2\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(4x+3-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

10 tháng 3 2023

\(6x^2-5x+3=2x-3x\left(3-2x\right)\)

\(\Leftrightarrow6x^2-5x+3=2x-9x+6x^2\)

\(\Leftrightarrow6x^2-5x+3-2x+9x-6x^2=0\)

\(\Leftrightarrow2x+3=0\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{-3}{2}\right\}\)

\(\left(3x-1\right)\left(4x+3\right)=2\left(3x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(4x+3\right)-2\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(4x+3-2\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{1}{4}\end{matrix}\right.\)

\(\text{Vậy phương trình có tập nghiệm là }S=\left\{\dfrac{1}{3};\dfrac{1}{4}\right\}\)